Host genome and gut microbiome in health and disease

Karsten Kristiansen
Laboratory of Genomics and Molecular Biomedicine
Department of Biology
University of Copenhagen
and
BGI-Shenzhen
Where is Shenzhen?
The mouse and the pig gut metagenome
Building a mouse gut microbial gene catalog

- 184 mice
 - different providers
 - different laboratories
 - different strains
 - different diets
 - males and females
- 1.13 Terabyte using Illumina HiSeq
- >5Gb on average
- 2.57 million non-redundant genes
- 541 metagenomic species

Li et al. Nature Biotech. 32, 834-841, 2014
Building a pig gut microbial gene catalog

7,685,872 non redundant genes
719 metagenomic species

287 animals: 17 breeds or selected lines, 11 farms, various ages and diets, 3 countries

- Native pigs:
 - France, West Indies: creole pigs
 - China: Bama, Ba Ring, Tibetan

- Selected breeds
 - France: Large White (LW), Large White X Landrace, (Large White X Landrace) X Pietrain, Pietrain, Meishan
 - Denmark: (Landrace x Yorkshire) X Duroc
 - China: Large White, binary mixed, tertiary mixed

- Miniature model pigs
 - Yucatan
 - Pitman-Moore
 - MeLiM
 - Vietnamese

Xiao et al. Nature Microbiology, in press
Of mice and men – and pigs
Comparison of catalogs

Pigs – pink
Human – yellow
Mice - grey

Xiao et al. Nature Microbiology, in press
Take home messages

• Comprehensive gene catalog of the gut microbiome of mice comprising 2.57×10^6 non-redundant genes and 541 metagenomic species

• Comprehensive gene catalog of the gut microbiome of pigs comprising 7.7×10^6 non-redundant genes and 719 metagenomic species

• A larger set of genes shared between the pig and the human gut microbiomes than between the mouse and the human gut microbiomes, but overall limited overlap between species

• In spite of limited overlap of genes, substantial overlap between metabolic pathways and functions

Xiao et al. Nature Microbiology, in press
Towards the human gut metagenome

2010: In total, generation of 576.7Gb high-quality data yielding 3.3 mio. genes
10 million human gut microbiome gene catalog

- 3 distinct cohorts
- 1,267 samples
- 6.4Tb data
- Illumina-based catalog construction pipeline
- Integrated with genomes from 511 gut-related prokaryotes
- ~10M genes in Integrated gene catalog
- IGC

Li et al. Nature Biotech. 32, 834-841, 2014
Why do we need gut microbiome gene catalogs?

- Better analyses of functional competence than possible based on 16S rDNA amplicon sequencing
- Important for comprehensive metatranscriptomics and metaproteomics
- Construction of metagenomic species/metagenomic linkage groups
- Eventually cheaper analyses using Complete Genomics technology and mapping onto reference catalogs
Humans: not good enough for mice
A meta-transcriptomics example

What about the genetics of obesity?
50 risk loci associate with obesity/increased BMI with genome-wide significance

Each of them are common but only increase risk of obesity with 8-33%
The two faces of obesity – healthy or unhealthy
Bimodal distribution of 292 non-diabetic Danish individuals

LGC individuals are more obese, more insulin resistant and more proinflammatory than HGC individuals

Low gene count individuals constitute about 23% of the population in Denmark. Compared with high gene count individuals they are characterized by:

- overall adiposity
- elevated serum leptin,
- decreased serum adiponectin,
- insulin resistance and hyperinsulinaemia
- dyslipidaemia
- a more marked inflammatory phenotype

Four metagenomics linkage groups characterize low and high gene count individuals
What about the genetics of diabetes?
The evolving landscape of established type 2 diabetes-associated genetic loci

Total count 2016: 100 genes associated with T2D. Explain less than 10% of T2D
The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome–wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D–GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome–wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.
The gut microbiota and type 2 diabetes
Metagenomic Linkage Groups (MLGs) enriched in controls and T2D patients

Bacteria associated with an increased risk of type 2 diabetes

Increased risk

Highest risk gene $TCF7L2$ 1.47 X
(Inuit specific $TBC1D4$ 10.3 X)

$Clostridium bolteae$ 5.89 X

$Clostridium hatheway$ 23.1 X
Branched-chain amino acids (BCAAs) and insulin resistance
Fatty acids (FA) and FA-derived metabolites have long been implicated in the development of insulin resistance and type 2 diabetes.

Branched-chain amino acids (BCAA) and related metabolites are more strongly associated with insulin resistance than many common lipid species.

BCAA-related signature is predictive of incident diabetes and intervention outcomes and uniquely responsive to therapeutic interventions.

BCAA supplementation requires the background of a high-fat diet to promote insulin resistance.
Insulin resistance correlates with increased levels of serum BCAAs and fecal *Prevotella copri*.

Insulin resistance correlates with increased levels of serum BCAAs and fecal *Prevotella copri*
Causal relationship between *P. copri* and plasma BCAAs, glucose intolerance and insulin resistance

Gavage with *P. copri* increases the relative abundance in fecal samples and impairs glucose tolerance

Gavage with *P. copri* increases serum BCAAs and decreases insulin sensitivity

f Serum BCAA levels are increased in *P. copri* compared to Sham gavaged mice

g Insulin sensitivity is diminished in *P. copri* compared to Sham gavaged mice

h Fecal *P. copri* abundance correlates with HOMA-IR

Take home message

Microbial synthesis of branched chain amino acids seems to be causally associated with insulin resistance.
Colorectal cancer

- 74 Han Chinese colorectal cancer patients
- 54 Healthy Han Chinese individuals
- 16 Danish colorectal cancer patients
- 24 Healthy Danish individuals
- Discovery phase using Chinese samples
- Validation phase using Danish samples supplemented by published data on Austrian and French patients
Co-occurrence network deduced from relative abundance of 21 mOTUs associated with CRC

Discovering gut microbial gene markers associated with CRC based on 31 markers

AUC: 0.9932
Validating a few robust gene markers associated with CRC

Rheumatoid arthritis
Gut, saliva and dental microbial markers are associated with rheumatoid arthritis

Enrichment of dental control MLGs by DMARD treatment

ROC prediction based on before treatment

Take home messages

• Even without knowledge of causality, microbial markers have great potential in relation to diagnosing of patients

• Few robust gut microbial markers are associated with colorectal cancer and rheumatoid arthritis in different populations

• Potential for improved early diagnosis based on microbiome analyses

• Potential for stratification of patients prior to treatment

• Much larger sample sizes needed to validate our findings
What we do not know

What is needed:
Much more knowledge
Understanding network and communities
Functional characterization
Host-microbial interaction

Causality - Causality - Causality
Acknowledgments

BGI-Shenzhen
Liang Xiao
Qiang Feng
Huijue Jia
Chen Ning
Junhua Li
Xiaoping Li
Ming Zhang
Suisha Liang
Dongya Zhang
Shenghui Li
Jianfeng Zhang
Dongqian Shen
Junjie Qin
Yingrui Li
Jun Wang

University of Copenhagen/NIFES, Bergen
Lise Madsen
Niels Banhos Danneskiold-Samsæe
Benjamin A.H. Jensen
Pla Kiilerich
Si Brask Sonne
Even Fjære
Lisa Kolden Midtbø
Dorota Kotowska
Camilla Colding

Pfizer
Hua Long
Joyce Chou
Jacob Glanville
John C. Lin

Institut National de la Recherche Agronomique
Dusko Ehrlich
Claire Rogel-Guillard
Joël Doré
Jordi Estellé,
Yuliaxis Ramayo-Caldas

Technical University
of Denmark
Susanne Brix
Tine Rask Licht
Henrik Bjørn Nielsen
Thomas Sicheritz-Pontén
Søren Brunak

The Novo Nordisk Foundation
Center for Basic Metabolic Research
Oluf Borbye Pedersen
Torben Hansen
Manimozhiyan Arumugam

Department of Endocrinology
and Metabolism,
Ruijin Hospital,
Shanghai Jiao Tong University
Ruixin Liu
Jie Hong
Jiqiu Wang
Guang Ning
Thank you for listening