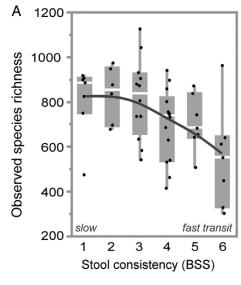
Colonic transit time relates to bacterial metabolism and mucosal turnover in the human gut

Henrik Munch Roager, PhD

Postdoc

Gut Microbiology and Immunology group National Food Institute Technical University of Denmark

Photocredit: Colourbox.dk


DTU Food National Food Institute

Introduction

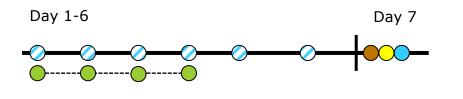
- Bristol stool scale correlates with gut microbial richness (Vandeputte et al., 2015; Gut)
- High bacterial richness and diversity is generally thought to characterize a healthy gut microbial ecosystem (Le Chaterlier et al., 2013; Lozupone et al., 2012)
- An increased system retention time has *in vitro* been associated with more extensive protein fermentation (Macfarlane et al., 1989; Tottey et al., 2016)

⁽Vandeputte et al., 2015; Gut)

Introduction

Bristol scale important stool measure that it microbiota composition Gut publication 20 15 Deroun Raes

- Two human intervention studies within the Gut, Grain and Greens (3G) Center
- Baseline samples from 98 subjects
 - 61 female and 37 male
 - Aged 22-66 years



Professor Tine Rask Licht

(Ibrügger et al., 2014; J. Clin. Trials)

Sample collection

- 4-days habitual dietary intake recorded
- Ø Ingestion of radio-opaque transit markers
- Abdominal X-rays obtained
- Fecal sample collected
- O Urine sample collected

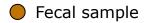
Abdominal X-rays

Colonic transit time

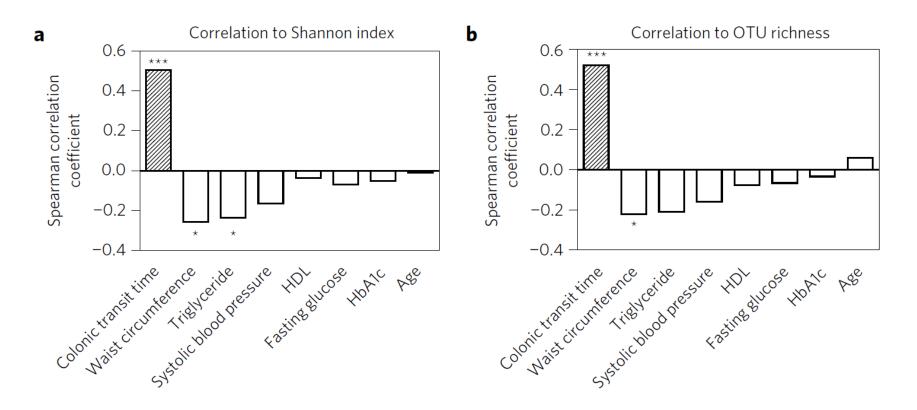
A dose of 24 radio-opaque markers is given to the subject on each of six consecutive days with breakfast. On day 7 abdominal X-rays are obtained. Number of markers are counted.

Fecal sample

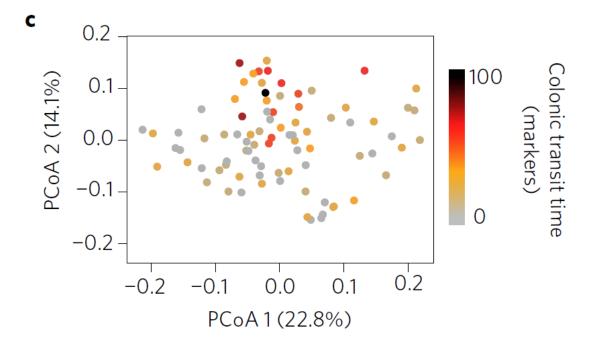
Fecal microbiota composition DNA extraction followed by 16S rRNA gene sequencing


💛 Urine sample

Urine metabolite profiling Ultra performance liquid chromatography mass spectrometry


How does colonic transit time relate to gut microbial diversity and composition?

Fecal microbiota composition DNA extraction followed by 16S rRNA gene sequencing

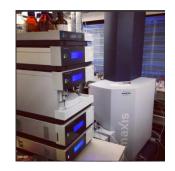

Colonic transit time correlates to gut microbial alpha-diversity

Correlations were calculated based on Spearman's Rank correlation (n=85). Significant associations are represented by asterisks (* p<0.05, *** p<0.000001).

A long colonic transit time reduces gut microbial beta-diversity

Beta-diversity assessed by weighted UniFrac distances (Adonis, P < 0.001, $R^2 = 0.07$)

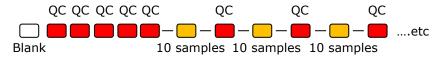
Bacterial groups significantly associated with colonic transit time Positive associated Negative associated


Phylum Class Order Family Genus Erysipelotrichi Ervsipelotrichales Erysipelotrichaeceae cc115 (q=0.05) SHA-98 (q=1.3x10⁻⁶) Christensenellaceae (g=1.0x10-5) Firmicutes Dehalobacteriaceae (q=4.0x10-4) Dehalobacterium (q=8.0x10⁻⁴) Clostridia Eubacteriaceae (q=0.04) Anaerofustis (q=0.02) Oscillospira (q=1.3x10⁻⁵) Ruminococcaeceae (q=0.01) Clostridiales Ruminoccocus (q=3.9x10⁻³) Faecalibacterium (g=2.0x10⁻⁴) Tissierellaceae (q=0.007) WAL 1855D (q=0.009) Mogibacteriaceae (q=0.01) Lachnospiraceae (q=2.1x10-3) Clostridiaceae (q=0.03) Porphyromonas (g=6.4x10⁻⁴) Porphyromonadaceae Odoribacteraceae Butyricimonas (g=0.005) Bacteroidetes Bacteriodia Bacteroidales S24-7 (q=0.04) Pasteurellaceae (q=0.04) Pasteurellales Gammaproteobacteria Pseudomonadales Pseudomonadaceae (g=0.04) Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Desulfovibrio (q=0.005) Tenericutes (q=0.02) Euryarchaeota Methanobacteria Methanobacteriales Methanobacteriaceae (q=2.9x10-4) Methanobrevibacter (q=3.7x10⁻⁴) (q=0.0001) (q=0.0002) (q=0.0002)

How does colonic transit time relate to colonic metabolism?

O Urine sample

Urine metabolite profiling Ultra performance liquid chromatography mass spectrometry



Global metabolic profiling of urine using UPLC-QTOF-MS

- Column
 - C18 column

• Settings

- m/z-range: 50-1000
- Positive and negative ionization
- Run sequence

Based on Want *et al.*, 2010; Nature Protocols

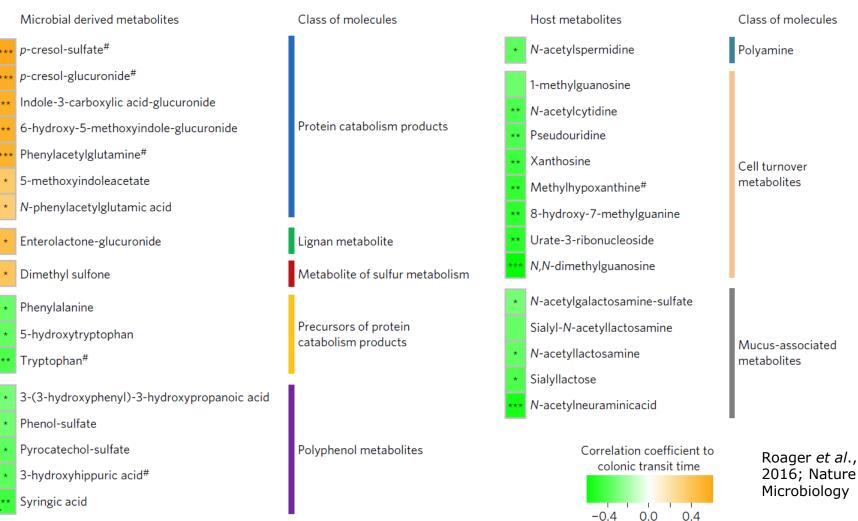
• Data processing included

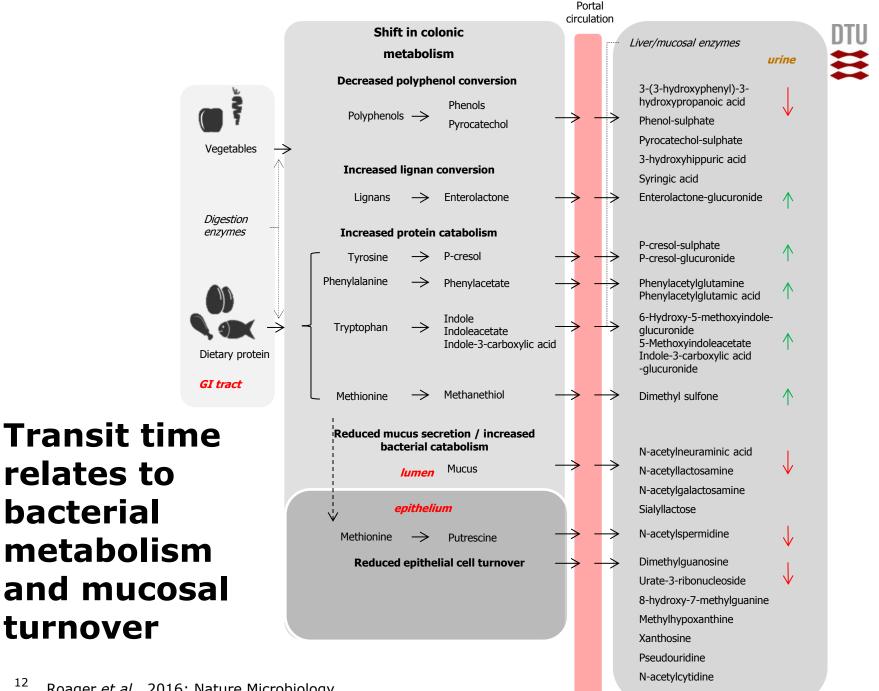
- The data were normalized to total ion intensity
- Features should be detected in at least 80% of samples
- Features with a CV% above 30% in QC-samples were excluded

• Metabolite identification levels according to Sumner et al., 2007

- Human Metabolome Database
- Tandem mass spectrometry
- Authentic standards

Colonic transit time associates with the urinary metabolic profile

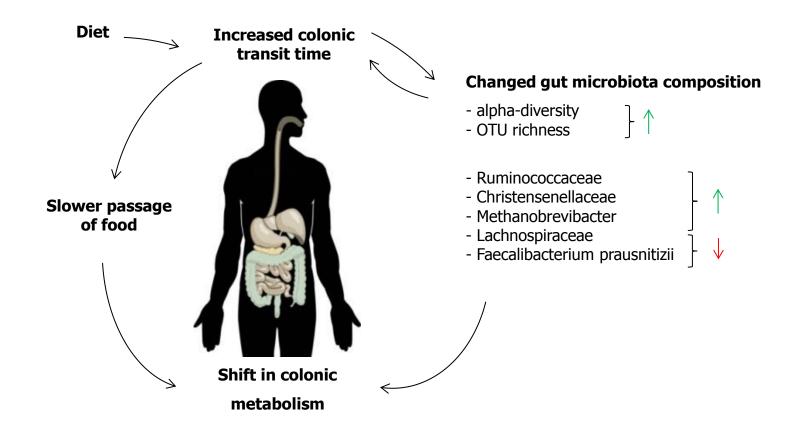

Spearman's Rank correlation +


correction for multiple testing

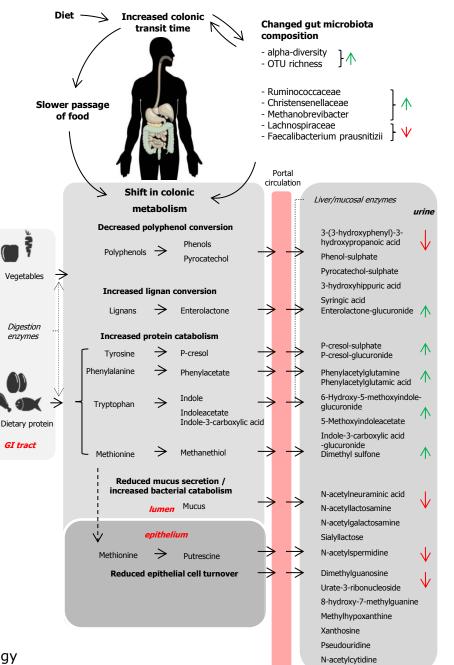
using Benjamini-Hochberg

approach (q<0.05)

- 1553 molecular features measured by UPLC-MS
 - 82 were associated with a long colonic transit time
 - 121 were associated with a short colonic transit time



12 Roager et al., 2016; Nature Microbiology



Transit time relates to the gut microbial composition and diversity

Conclusions

- Colonic transit time is a confounder in gut microbiota and metabolomics studies
- High microbial richness at the OTU level may not per se be indicative of a healthy ecosystem
- Our findings may contribute to understand diseases where constipation is a risk factor, e.g. colorectal cancer.

Acknowledgements

National Food Institute, Technical University of Denmark

Tine Rask Licht Martin Iain Bahl Henrik Lauritzen Martin Frederik Laursen Vera Carvalho

Systems Biology, Technical University of Denmark

Ramneek Gupta Henrik Bjørn Nielsen Lea S. Hansen Damian Plicta Marlene D. Dalgaard

Department of Nutrition, Exercise and Sports, University of Copenhagen

Lotte Lauritzen Mette Kristensen

The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen

Oluf Pedersen Torben Hansen Henrik Vestergaard Rikke Gøbel

Department of Radiology Bispebjerg and Frederiksberg Hospitals

Morten H. Sparholt Anders F. Christensen

www.3g-center.dk

Innovation Fund Denmark