Possible Mechanisms in Prevention by Moderate Alcohol Intake

NuGOweek 2016 Copenhagen, DK Kenneth J. Mukamal

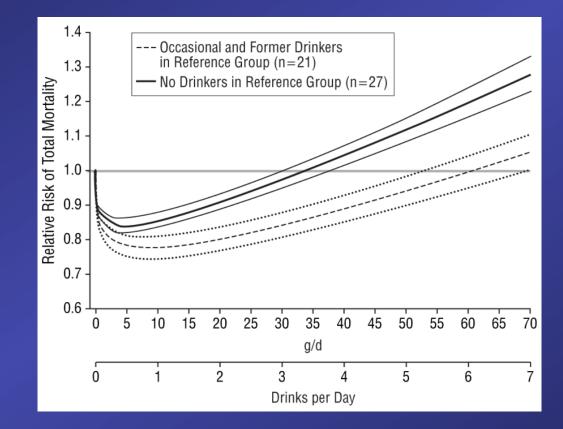
Conflict of Interest Statement

- I have no financial conflicts of interest to disclose.
- Our research to date has been funded exclusively by the National Institutes of Health and the American Heart Association.

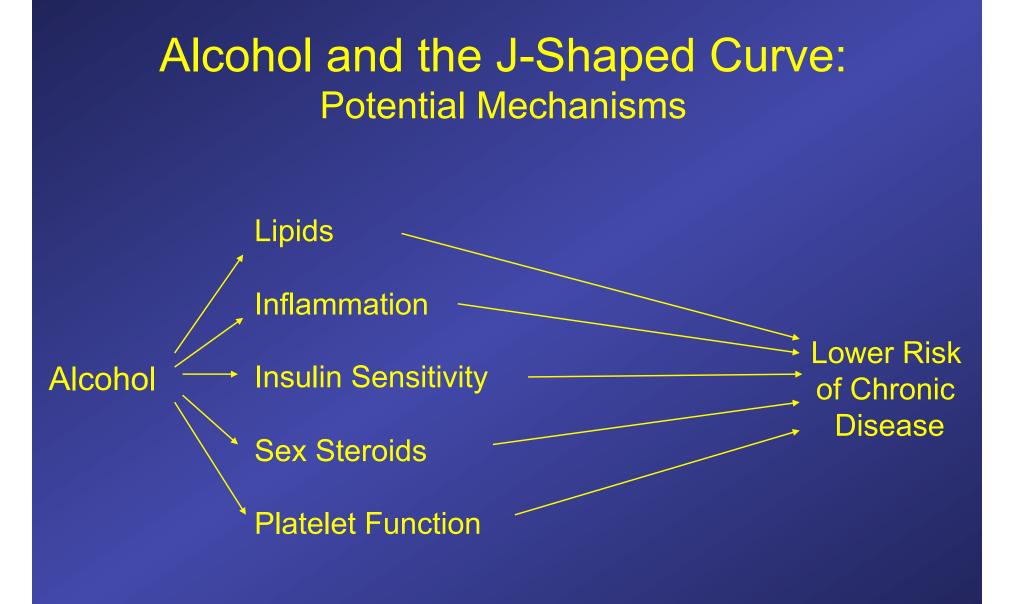
A Very Old Habit

Food contains alcohol:	Species:	Hair et	hyl gluc	uronide (ng/mg)
no	Norway rat (9)	< LOQ			
possibly	European roedeer (1)	< LOQ			
	Large bamboo rat (1)	< LOQ			
Lo	ng-tailed macaque (1)	< LOQ			
likely	Plantain squirrel (1)				
i Co	ommon treeshrew (19)				
P	entailed treeshrew (2)				
	Gray tree rat (1)				
					—
	(0	0.5	1.0	1.5

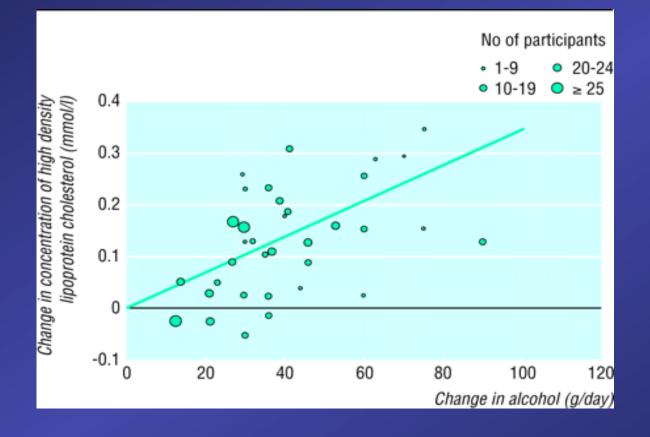
Malaysian pen-tailed treeshrew Ethyl glucuronide levels


Wiens et al., PNAS 2008

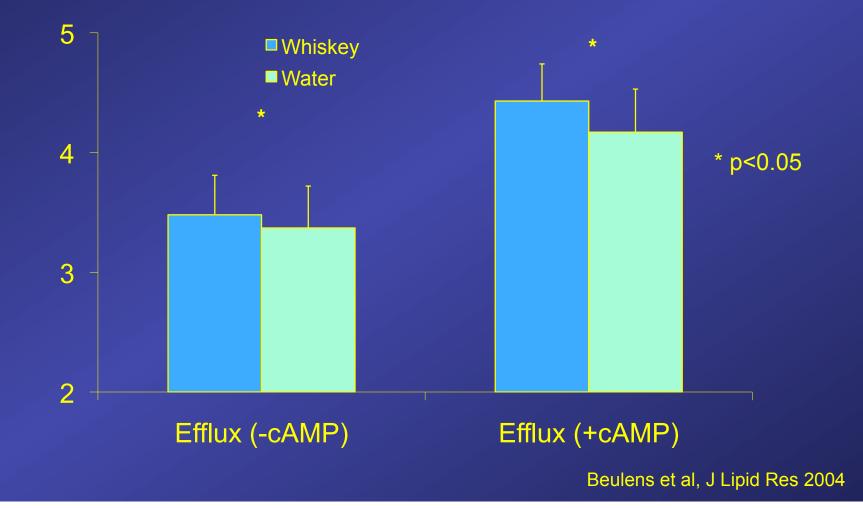
A Pretty Old Observation

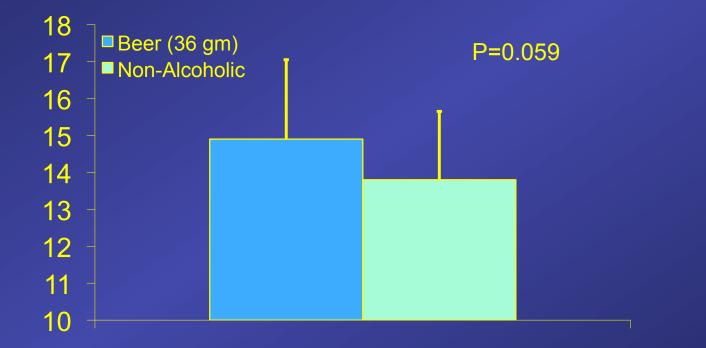

"My personal experience...has indicated alcohol was not only not a cause of arteriosclerosis, but, so far as one could judge, was in many cases a preventative."

Timothy Leary, NEJM 1931


Alcohol Consumption and Mortality: Systematic Review of 48 Dose-Response Curves

Di Castelnuovo et al, Arch Intern Med 2006

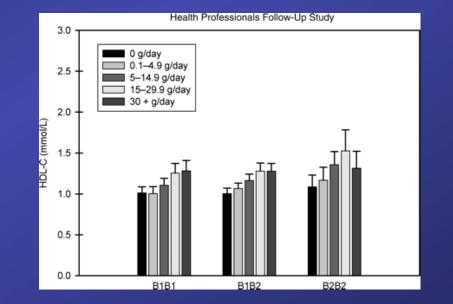

Alcohol Intake and HDL-C: Meta-Analysis of 36 Randomized Trials

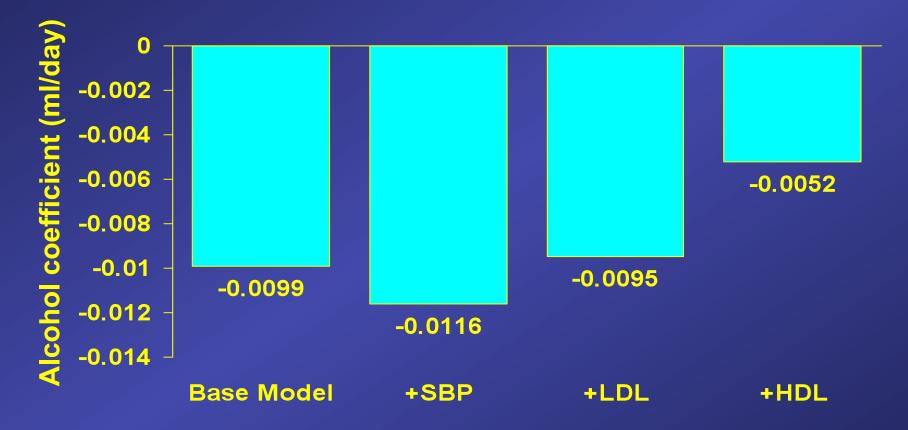

Effect 25% larger if baseline HDL-C <40 than if >48 mg/dl P=0.04

Rimm et al, BMJ 1999

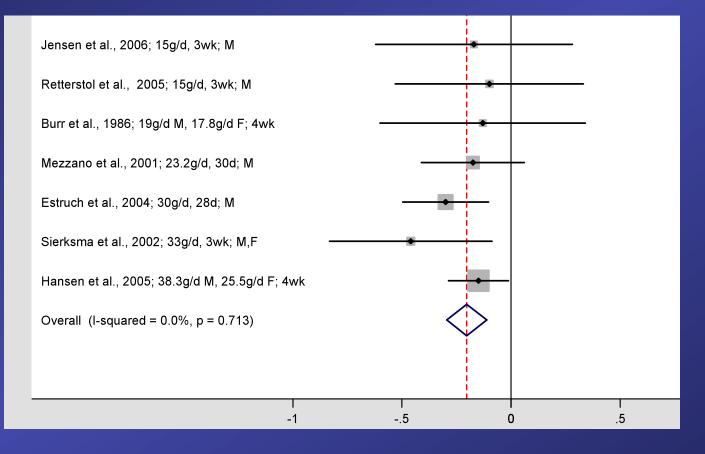
Alcohol & Macrophage Cholesterol Efflux: 34-day crossover trial of 23 men



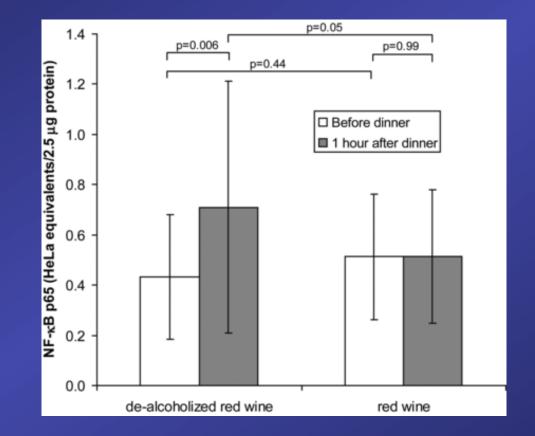

Alcohol & Macrophage Cholesterol Efflux: 28-day crossover trial of 13 men


Králová Lesná et al, Physiol Res 2010

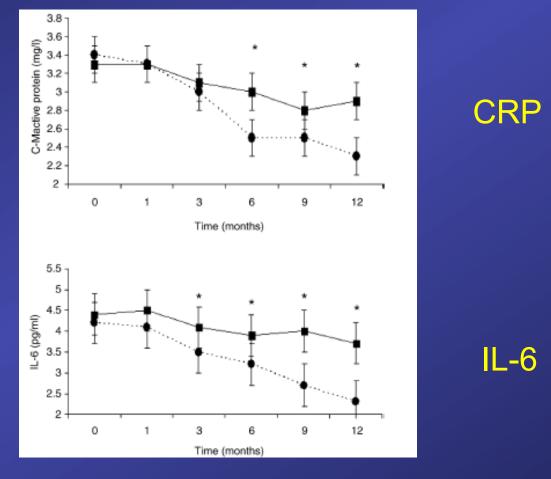
Alcohol, *CETP* Variation, and HDL-C: Gene x Alcohol Interaction in Men and Women



Mediating Effects on CHD Risk: Honolulu Heart Program Lipoprotein Cohort


Langer et al, Circulation 1992

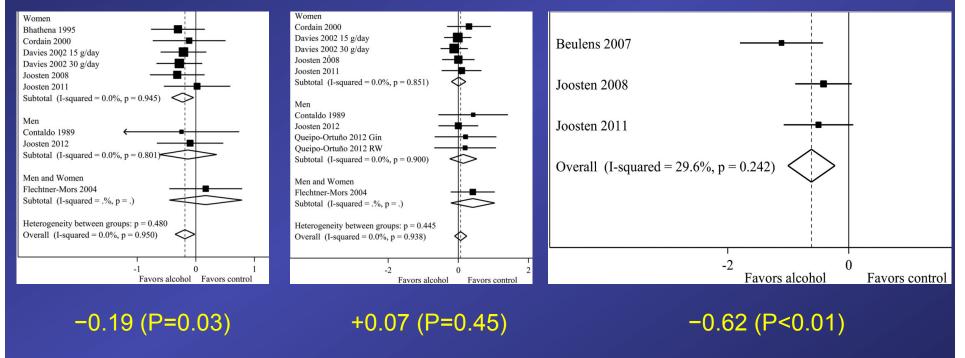
Alcohol Use and Fibrinogen: Meta-analysis of 7 clinical trials


Brien et al, BMJ 2011

Alcohol and PBMC NF-κB Activity: 4-week crossover trial of 19 men

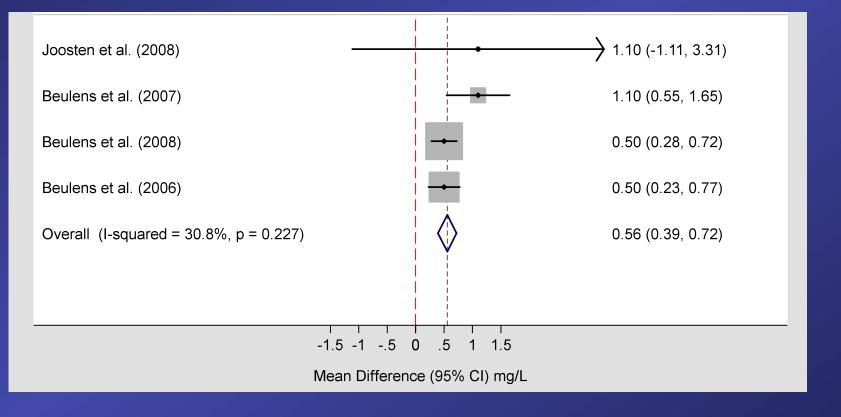
Schrieks et al, Alcohol Alcohol 2013

Red Wine in Patients with DM & MI: 1-year parallel RCT of advice to drink in 115 patients


Marfella et al, Diabet Med 2006

Alcohol Intake and Glycemia: Meta-analyses of insulin, glucose and HbA_{1c}

Insulin

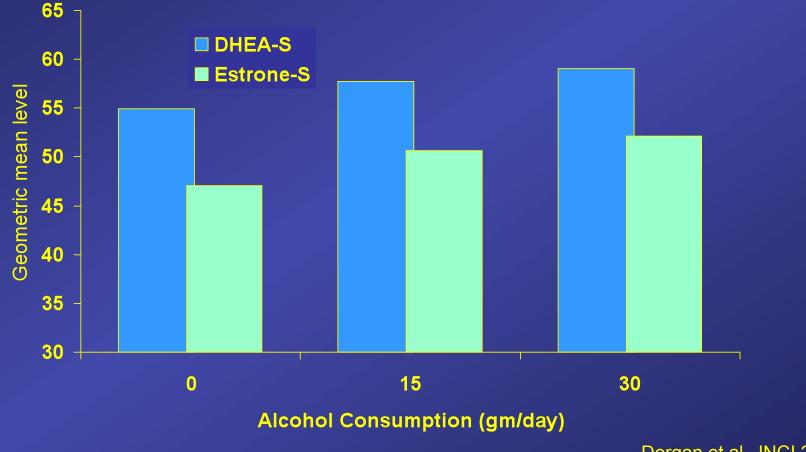

Glucose

Hemoglobin A_{1c}

Schrieks et al, Diabetes Care 2015

Alcohol Use and Adiponectin: Meta-analysis of 4 clinical trials

Brien et al, BMJ 2011

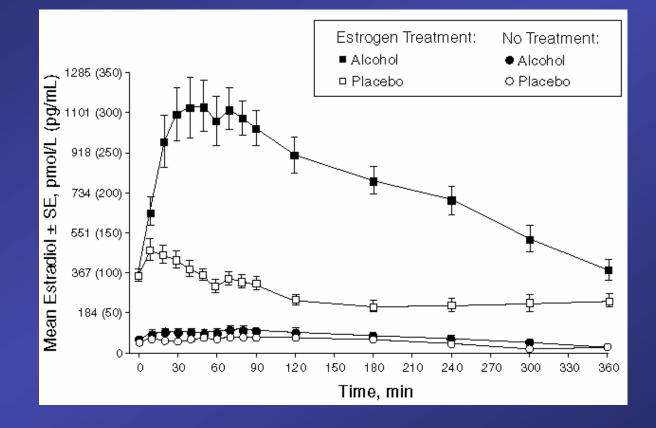

Alcohol & Adiponectin Expression: 6-week crossover trial of 36 women

Variable	Grape juice	White wine	p value
Insulin sensitivity			
HOMA-IR	1.64±0.13	1.42 ± 0.13	0.02
Fasting insulin (pmol/l)	46.5±3.4	40.0 ± 3.4	< 0.01
Fasting glucose (mmol/l)	5.4±0.1	5.4 ± 0.1	0.72
HbA _{1c} (%)	6.0 ± 0.04	5.9 ± 0.04	0.09
Fasting NEFA (mmol/l)	0.43 ± 0.04	$0.44 {\pm} 0.04$	0.67
Body weight (kg)	70.4±1.7	71.1 ± 1.7	< 0.001
Adiponectin			
ADIPOQ/ARBP mRNA (arbitrary units)	0.98±0.15	1.09 ± 0.15	0.04
PPARG/ARBP mRNA (arbitrary units)	0.67±0.09	0.73 ± 0.09	0.13
Fasting total adiponectin (µg/ml)	12.0 ± 0.8	13.1 ± 0.8	< 0.001
Fasting HMW adiponectin (µg/ml)	8.8±1.2	9.9 ± 1.2	0.02
Lipid profile			
Fasting triacylglycerol (mmol/l)	1.18 ± 0.08	1.03 ± 0.08	0.04
HDL-cholesterol (mmol/l)	1.57 ± 0.04	1.68 ± 0.04	< 0.0001
LDL-cholesterol (mmol/l)	3.84±0.12	3.51 ± 0.12	< 0.0001

Joosten et al, Diabetologia 2008

Alcohol and Serum Sex Steroids:

8-week crossover trial of 51 postmenopausal women

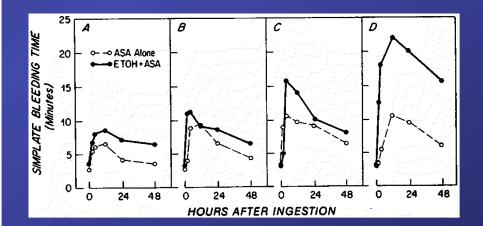

Dorgan et al, JNCI 2001

Alcohol and Plasma Sex Steroids: 3-week crossover trial of 9 women, 10 men

		Men (<i>n</i> = 10)		Women ($n = 9$)
	Beer	No-alcohol beer	Beer	No-alcohol beer
HDL cholesterol (mmol/liter)	1.34 (0.24)*	1.18 (0.16)	1.70 (0.33)*	1.55 (0.32)
DHEAS (micromol/liter)	4.0 (1.8)#	3.5 (1.7)	3.9 (2.7)	3.3 (2.2)
Testosterone (nmol/liter)	15.3 (3.6)*	16.4 (2.9)	1.1 (0.6)	1.1 (0.6)
Estradiol (pmol/liter)	66.6 (11.7)	65.2 (8.9)	28.2 (16.3)	28.0 (13.0)

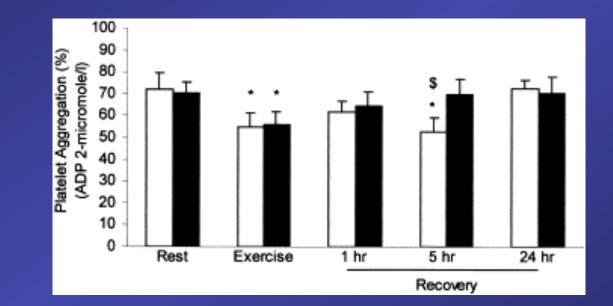
Sierksma et al, ACER 2004

Alcohol and Estradiol Levels: Acute effects in 24 postmenopausal women


Ginsburg et al, JAMA 1996

Alcohol, Aspirin, and Bleeding Time: Crossover trial among 9 men and women

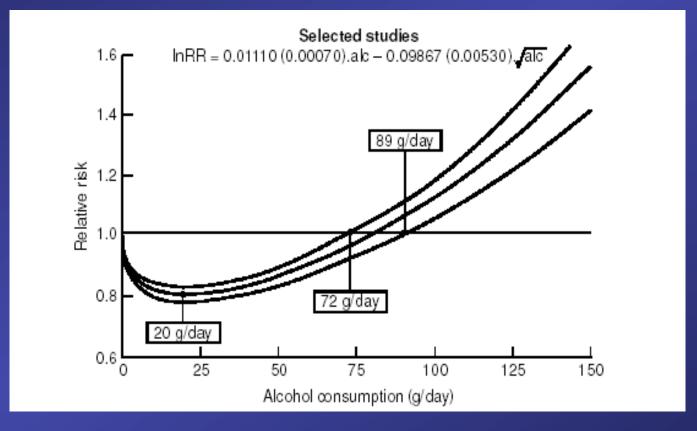
Table 1. Response of Bleeding Time to Aspirin (325 mg), Ethanol (50 g), or Both Together.


HOURS AFTER INGESTION	ASPIRIN	Ethanol	Aspirin + Ethanol
		BLEEDING TIME (M	INUTES) *
0	3.3±0.2	3.0±0.1	3.1±0.1
2	5.1±0.2 †	3.5 ± 0.2	7.3±0.9 ‡
4	6.4±0.7‡	3.7±0.3	10.4±1.2 §
12	7.2±0.8‡	3.3 ± 0.1	11.0±1.5 §
24	5.8±0.8 †	3.4±0.1	9.1±1.5‡
48	4.3±0.5	3.2 ± 0.1	7.1±1.2 ‡
72	3.4±0.2	3.3±0.1	5.6±0.7 ‡
96	3.2±0.1	3.2 ± 0.1	4.2±0.3 ‡
120	3.2±0.2	3.1±0.1	3.3±0.1

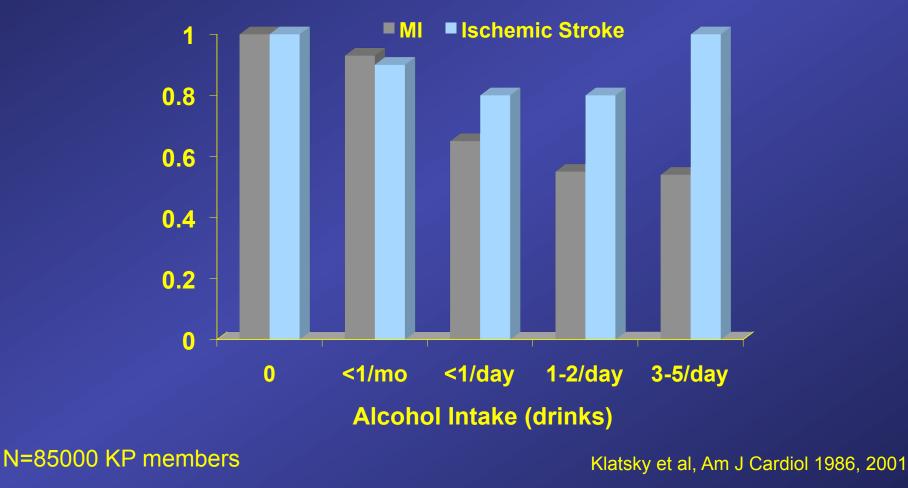
*Mean \pm S.E.M. in nine subjects. \pm P<0.01 as compared with 0 hours. P<0.05 as compared with 0 hours. P<0.001 as compared with 0 hours.

Deykin D et al, N Engl J Med 1982

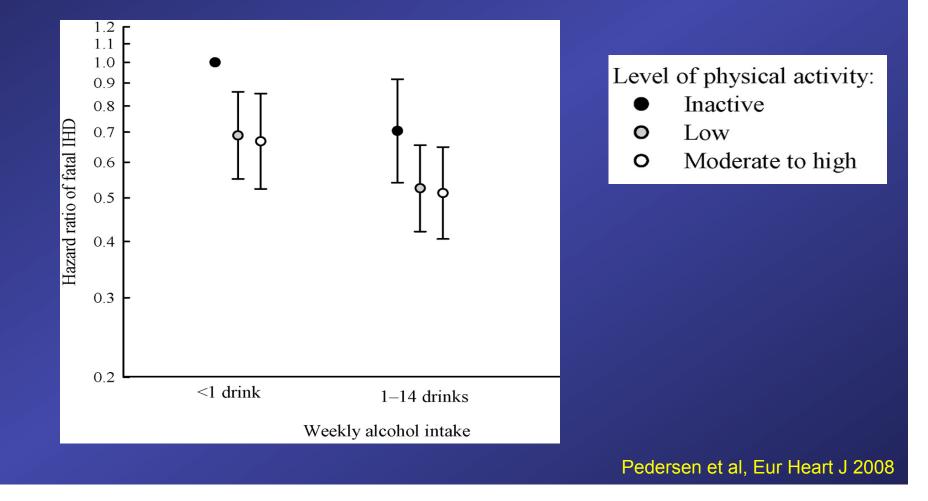
Alcohol and Platelet Aggregation after Exercise: Crossover trial among 19 men and women

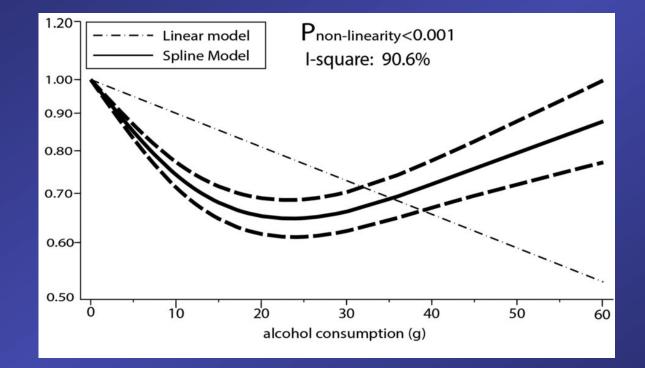


El-Sayed, Thromb Res 2002

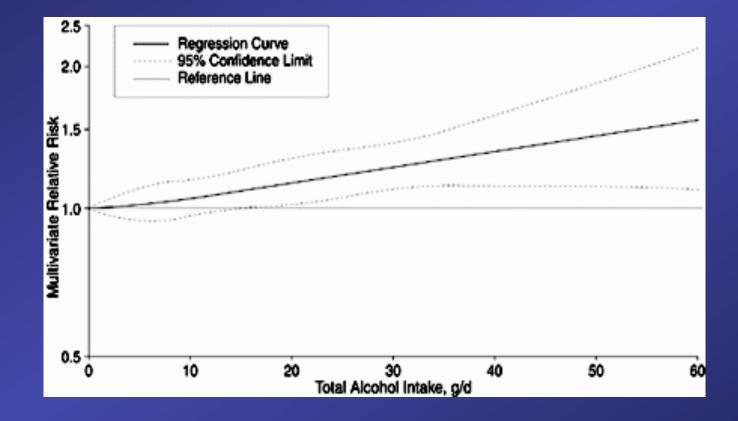

Summary: Existing Trials

- In feeding studies, alcohol:
 - Raises HDL-C and cholesterol efflux
 - Lowers fibrinogen and possibly other markers of inflammation
 - Lowers fasting insulin and HbA_{1c}
 - Raises DHEA and estrone sulfate
 - Prolongs bleeding time and variably reduces platelet aggregability


Alcohol Use and Risk of CHD: Meta-analysis of 28 cohort studies


Alcohol & Risk of MI/Ischemic Stroke: Kaiser Permanente cohort

Alcohol, Physical Activity, and CHD Copenhagen City Heart Study

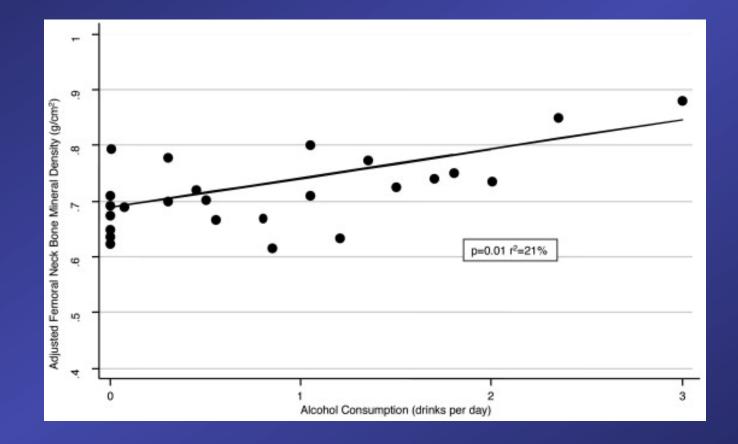


Alcohol Intake and Risk of Diabetes: Meta-analysis of 26 cohort studies

Li et al., Am J Clin Nutr 2016

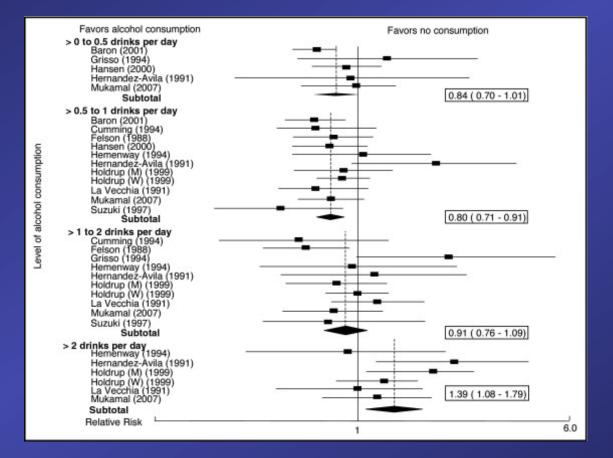
Alcohol Use and Risk of Breast Cancer: 7 Pooled Cohort Studies of Women

N=322647 women

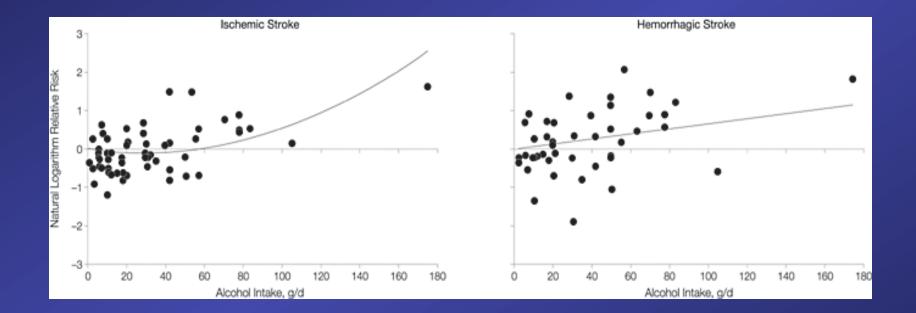

Smith-Warner et al, JAMA 1998

Alcohol and Breast Cancer: Receptor Status in the PLCO Trial

Alcohol Consumption, by Hormone Receptor Status	No. of Cases ^a	Multivariate HR ^b	95% CI
ER+			
Never	175	1.00	Referent
Former	235	1.14	0.93, 1.4
Current, drinks/week			
<0.5	341	1.15	0.95, 1.39
0.5-<1	158	1.29	1.03, 1.61
1-<7	397	1.29	1.07, 1.56
≥7	219	1.48	1.19, 1.83
P _{trend} ^c		0.003	9
ER–			
Never	33	1.00	Referent
Former	50	1.10	0.70, 1.73
Current, drinks/week			
<0.5	60	0.98	0.63, 1.51
0.5-<1	29	1.08	0.65, 1.81
1-<7	68	1.05	0.68, 1.62
≥7	26	0.84	0.49, 1.44
P _{trend} ^c		0.24	


Falk et al, Am J Epidemiol 2014

Alcohol and Femoral Neck BMD: Four Cohort Studies


Berg et al, Am J Med 2008

Alcohol and Hip Fracture: Case-Control and Cohort Studies

Berg et al, Am J Med 2008

Meta-Analysis of 24 Studies

Reynolds et al, JAMA 2003

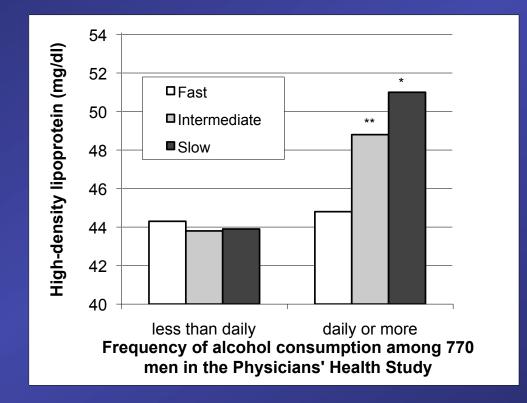
Alcohol Use and Upper GI Bleeding: 1224 Cases and 2945 Controls in US and Sweden

Kaufman et al, Am J Gastroenterol 1999

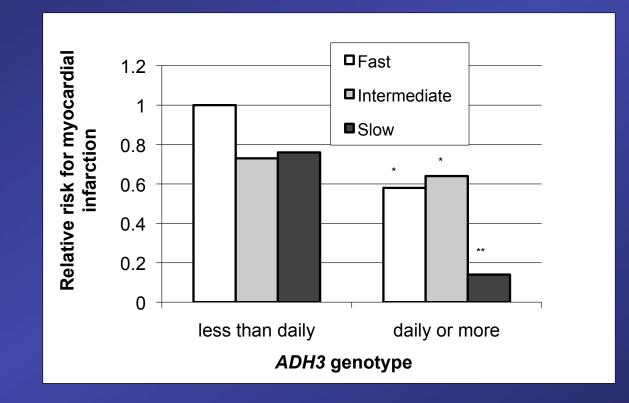
Summary: Observational Studies

- Lower risk of CHD
- Lower risk of ischemic stroke, less pronounced than for CHD
- Lower risk of diabetes
- Higher risk of estrogen-sensitive breast cancer
- Higher bone density
- Higher risk of hemorrhagic stroke
- Higher risk of GI bleeding

Returning to Alcohol Metabolism


- 7 ADH genes on chromosome 4
- ADH1A, ADH1B, ADH1C have greatest affinity
- Common polymorphisms in ADH1B in African (B3) and Middle Eastern (B2) populations
- Common polymorphism in *ADH1C* in whites
- Common polymorphism in ALDH2 in East Asians

Kinetic Activity of ADH Alleles


Bosron et al, Mol Aspects Med 1988

ADH1C, Alcohol, and HDL-C: The Physicians' Health Study


Hines et al, NEJM 2001

ADH1C, Alcohol, and Risk of CHD: The Physicians' Health Study

Hines et al, NEJM 2001

ADH1C, Alcohol, and Prevalent CVD: The Framingham Offspring Study

Djousse et al, Am J Cardiol 2005

ADH1B*2 and Risk of CHD: Meta-analysis of 46 observational studies

- Known population stratification (median MAF~5%)
- Associated with education
- Not associated with HDL-C
- Strong instrument for binge drinking

Category for coronary heart disease outcome	No of studie		Odds rat (95% Cl		Odds ratio (95% CI)	P value
Overall (all individuals)	46	20 259/168 73	1		0.90 (0.84 to 0.96)	0.001
Any or no alcohol intake						
Non-drinkers	31	5883/43 029			0.98 (0.88 to 1.10)	0.095*
Drinkers only	40	10 130/107 47	8 ——		0.86 (0.78 to 0.94)	
Drinkers subgroup (unit	s/wee	k)				
Light (>0 to <7)	32	4686/47 246		· ·	0.90 (0.79 to 1.02)	0.828*
Moderate (≥7 to <21)	32	3222/33 772		_	0.89 (0.75 to 1.06)	
Heavy (≥21)	29	1919/16 225			0.97 (0.76 to 1.24)	
			0.70 1	1.25	5	

* P value for heterogeneity obtained from test for trend using meta-regression

ALDH2 rs671 and Risk of CHD: Meta-analysis of 9 case-control studies

OR (95% CI)	Weight 5
0.78 (0.36, 1.67)	4.06
1.87 (1.46, 2.40)	11.43
1.16 (0.90, 1.51)	11.17
0.71 (0.29, 1.74)	3.24
1.68 (1.28, 2.20)	10.91
1.34 (0.86, 2.10)	7.76
1.36 (1.06, 1.75)	48.57
1.68 (0.73, 3.86)	3.60
1.92 (1.23, 2.99)	7.79
1.23 (0.88, 1.72)	9.76
4.72 (1.84, 12.10)	3.00
2.13 (1.32, 3.44)	7.25
1.69 (1.12, 2.55)	8.32
1.05 (0.84, 1.33)	11.71
1.64 (1.22, 2.20)	51.43
1.47 (1.23, 1.77)	100.00
	0.78 (0.36, 1.67) 1.87 (1.46, 2.40) 1.16 (0.90, 1.51) 0.71 (0.29, 1.74) 1.68 (1.28, 2.20) 1.34 (0.86, 2.10) 1.36 (1.06, 1.75) 1.68 (0.73, 3.86) 1.92 (1.23, 2.99) 1.23 (0.88, 1.72) 4.72 (1.84, 12.10) 2.13 (1.32, 3.44) 1.69 (1.12, 2.55) 1.05 (0.84, 1.33) 1.64 (1.22, 2.20)

Wang et al, DNA & Cell Biology 2013

Summary: Genetic Studies

- Lower risk of CHD most pronounced in CETP Taq1B carriers
- Lower risk of CHD most pronounced in ADH1C slow metabolizers of ethanol
- Effects of variants associated with alcohol consumption per se mixed
 - Lower risk among ADH1B*2 carriers
 - Higher risk ALDH2*Lys carriers
- Dozens of other candidate gene studies mixed