

Role of the gut microbiota in overand undernutrition

Laure Bindels, PhD Copenhagen September 7, 2016

Aaprille or A w

Leffe.

Noin

Université catholique de Louvain Diet Nondigestible carbohydrates Fat

Gut microbiota

Adapted from Delzenne *et al.*, Nat Rev Endocrinol 2011

. . .

Outline

- 1. Gut microbiota as a nutritional target
- 2. Metabolic disorders associated with obesity
- 3. Metabolic disorders associated with cancer
- 4. Gut microbiota in alcohol-dependent patients

The gut microbiota

Gut microbiota-host crosstalk

Experimental tools to study our microbial partners

Adapted from Bindels & Delzenne, Int J Biochem Cell Biol 2013

Prebiotics

Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics

GLENN R. GIBSON AND MARCEL B. ROBERFROID*1

MRC Dunn Clinical Nutrition Centre, Cambridge, United Kingdom and *Unité de Biochimie Toxicologique et Cancérologique, Départment des Sciences Pharmaceutiques, Université Catholique de Louvain, Brussels, Belgium

Beneficial physiological effects

UCL

Gibson & Roberfroid, J Nutr 1995

Future research on prebiotics

	Definition	Substantiation of prebiotic effect	Compounds
2010	A selectively* fermented ingredient that results in specific changes in the composition and/or activity of the gastrointestinal microbiota, thus conferring benefit(s) upon host health ⁵²	Selectivity of effect on gut microbiota should be established <i>in vivo</i> using most up-to-date technology Health effects, or at least physiological effects, should be established in controlled trials and correlated with selective changes in gut microbiota composition or activity	Inulin FOS tGOS Lactulose
	V	+	•
2015	A nondigestible compound that, through its metabolization by microorganisms in the gut, modulates composition and/or activity of the gut microbiota, thus conferring a beneficial physiological effect on the host	The degree to which the effect of the prebiotic on composition and/or activity is "selective" is not a criterion The burden of proof for health claims does not change Definition places more focus on the causal link between the microbial metabolization of the compound, the resulting modulation of the gut microbiota, and the beneficial physiological effects	Inulin FOS tGOS Human milk oligosaccharides Candidate prehiotics? [‡] • Resistant starch • Pectin • Arabinoxylan • Whole grains • Various dietary fibres • Noncarbohydrates that exert their action through a modulation of the gut microbiota

Nature Reviews | Gastroenterology & Hepatology

Figure 1 Current and proposed definitions for the concept of prebiotics

Resistant starches (RS) include all starch and starch degradation products not absorbed in the small intestine of healthy individuals.

Designation	Description	Example
RSI	Physically inaccessible starch	Coarsely ground or whole-kernel grains
RSII	Granular starch with the	High-amylose maize starch,
	B- or C-polymorph	raw potato, raw banana starch
RSIII	Retrograded starch	Cooked and cooled starchy foods
RSIV	Chemically modified starches	Cross-linked starch and octenyl succinate starch
RSV	Amylose-lipid complex	Stearic acid-complexed high-amylose starch

TABLE 1 Types of resistant starches¹

¹ RSI, type I resistant starch; (RS); RSII, type II resistant starch; RSIII, type III resistant starch; RSIV, type IV resistant starch; RSV; type V resistant starch.

Outline

- 1. Gut microbiota as a nutritional target
- 2. Metabolic disorders associated with obesity
- 3. Metabolic disorders associated with cancer
- 4. Gut microbiota in alcohol-dependent patients

Cancer cachexia

- Up to 80% of cancer patients, depending of the tumor site
- Reduces quality and length of life
- May be a cause of cancer therapy discontinuation
- No valid treatment

Giacometti, Walking man

Fearon et al., Cell Metab 2012; Fearon et al., Nat Rev Oncol 2013; Argiles et al, Nat Rev Cancer 2014.

A microbial signature in cancer cachexia

Community-wide approach to characterize the gut microbiota in two mouse models of cancer cachexia

A microbial signature in cancer cachexia

LDR

... independent of the food intake

UCL Université catholique de Louvain Bindels et al, The ISME J 2016

Bindels et al, Br J Cancer 2012; Bindels*, Neyrinck* et al, Plos ONE 2015.

Selected synbiotic approach

3

With Bruno Pot & Corinne Grangette

16S rRNA genes from the caecal microbiota analysed by Illumina MiSeq. LEfSe cladogram.

Benefits of the synbiotic approach

³ Hypothetical role of the gut barrier

Université catholique de Louvain Bindels & Thissen, Clin Nutr Exp 2015

UCL

Hypothetical role of the gut barrier

Current working model

Outline

- 1. Gut microbiota as a nutritional target
- 2. Metabolic disorders associated with obesity
- 3. Metabolic disorders associated with cancer
- 4. Gut microbiota in alcohol-dependent patients

A role for the gut permeability?

4

Leclercq et al, Brain Behav Immun 2012; Leclercq et al, Biol Psychiatry 2014.

A role for the gut permeability ?

Université catholique Leclercq et al, PNAS 2014

Dysbiosis

Analysis of Volatile organic compounds by gas-chromatography-mass spectrometry (K. Verbeke, Kuleuven B) Bi-plot analysis reveals ADT1 HP- versus LP are differentiated (14 metabolites)

Conclusions

- Importance of the prebiotic concept.
- Microbiota-dependent and independent effects of functional foods: strategies to demonstrate causality exist.
- Underexplored areas could benefit from targeted prebiotic or synbiotic approaches.

Prof. Amanda Ramer-Tait

Prof. Jens Walter

Carlos Gomes Neto

Hatem

Kittana

Rafael Segura Munoz

UNL Gnotobiotic Mouse Facility Robert Schmaltz Brandon White

Liz Cody

Dr. Inés Martínez

Maria Isabel Quintero Junyi Yang Maria Ximena Maldonado-Gomez

FSR Fellowship

UCL (BE)

Prof G. Muccioli Prof P. Buc Calderon Prof J.P. Thissen Prof O. Feron Prof P. Sonveaux Dr P. Porporato Dr J. Verrax Dr R. Beck

UCL (BE)

Prof E. Hermans Dr B. Koener Dr O. Schakman Prof J. Mahillon Prof J.B. Demoulin Dr V. Havelange Dr Fl. Bindels

ULG (BE)

Dr B. Taminiau Prof G. Daube E. François Prof C. Blecker Prof A. Richel

Katholieke Universiteit Leuven (BE) Dr H. Schoemans Prof J. Maertens

University of Alberta

(CA) Prof J. Walter Dr I. Martinez Rowett Institute, Aberdeen (UK) Dr K.P. Scott and J.C. Martin

University of Reading (UK) Prof S. P. Claus and C. Leroy

Institut Pasteur, Lille (FR) Prof B. Pot and Dr C. Grangette