UNIVERSITY OF COPENHAGEN

LC-MS DATA PREPROCESSING

Gözde Gürdeniz

Outline

✓ LC-MS Data preprocessing pipeline (MZmine)

- 1. Peak detection
- 2. Deisotoping
- 3. Alignment
- 4. Gap filling
- ✓ Conclusions

Data Preprocessing : Data Reduction

Feature detection and Alignment

Annotation

1000 - 10000 features (100 samples \approx 1 MB)

500-1500 compounds

id	mz	\mathbf{rt}	isotopes	adduct	pc
65	176.04	280.09			
76	136.05	280.43	[14][M+1]1+		5
77	135.05	280.43	[14][M]1+		5
74	153.06	280.43		[M+H] + 152.05437	5
75	175.04	280.43		[M+Na] + 152.05437	5
73	197.02	280.76		[M+2Na-H] + 152.05437	5
78	377.74	286.15			
79	732.5	286.49			
83	488.32	286.82		[M+Na] + 465.33205	7
82	466.34	286.82		[M+H] + 465.33205	7

Data Preprocessing Pipeline

RAW DATA

Feature Detection

<u>Aim</u>

- ✓ Data reduction
- ✓ Identification and quantification of true signals
- ✓ Avoid noise-induced signals
- ✓ Precise quantification

Feature : 2D-signal induced by a single ion species of a compound (e.g. [M+H]+)

Feature detection : (1) Detection of mass signals

- ✓ Build continuous chromatograms by defining [№]
 m/z window
- Check its length (time span) and intensity (height)

Restrictions:

- min-max peak width
- minimum peak height
- signal/noise

Seconds

Feature detection : (2) Detection of chromatographic peaks

Feature detection : (2) Peak detection and deconvolution

✓ To detect and quantify individual peaks in chromatograms

m/z = 356.585 +/- 0.01

(MZmine) Local minimum search : Define parameters such as min height, min peak width

Data Preprocessing Pipeline

RAW DATA

Deisotoping (optional)

- ✓ Redundant info for data analysis
- ✓ Useful for identification

[020510-01201.CDF] scan #1336

📕 Scan #1336 📕 Peaks in 020510-01201.CDF peak list2 na10lm deisotoped 📕 Isotopes (4) 441.299 m/z @5:01 [020510-01201.CDF]

MZmine - m/z and RT tolerance
 XCMS - CAMERA , m/z tolerance

Data Preprocessing Pipeline

RAW DATA

Slide 11

Peak List Alignment

Sample 1

	Ret. Time	m/z	Height /Area
Feature 1	0.81	58.545	805.12
Feature 2	0.94	75.1685	240.52
-	-	-	-
Feature n	5.45	750.35	1052.45

Sample 2

	Ret. Time	m/z	Height /Area
Feature 1	0.82	58.585	500.12
Feature 2	0.98	75.161	40.59
-	-	-	-
Feature n	5.48	750.35	9152.55

Matched Peak List

	Ret. Time	m/z	Samp1 Height/ Area	Samp2 Height/ Area
Feature 1	0.81	58.565	500.12	805.12
Feature 2	0.96	75.1668	40.59	240.52
-				
Feature 2	5.46	750.35	9152.55	1052.45

Retention time shifts:

- Pressure, temperature and flow rate fluctuations
- ✓ Matrix effects
- Stationary phase decomposition

Peak List Alignment

MZmine Join Aligner

- Create a master peak list : concatenate all the features for all the samples
- Alignment window : m/z and RT bi-dimensional window.
- Score function : similarity of peaks between master peak list and each sample

Gap Filling

Gap filling refers to recovering the missing signals from raw data.

Missing peaks:

- 1. True zeros. They don't appear in that sample.
- 2. False zeros. Low intensity, bad quality shape, or a mistake in peak detection.

Gap Filling

🖉 Aligned peak list										
ID	Average		Deeksh	2011-04-18-16101.CDF 2011-04-18-11501.CDF		2011-04-18-14501.CDF				
	m/z	Ret.time	Feak Sh	Status	Area	Status	Area	Status	Area	
16	87.0452	2.00		•	8.2E1	•	9.4E1	•		<u> </u>
17	88.0401	2.00		•	6.4E1	•				
18	89.0062	1.37		•	6.2E2			-		
19	92.9289	0.47		•	5.8E2	•	3.4E2		4.7E2	
20	93.0339	3.76		•	9.3E1	• \	2.5E2		5.7E2	
						Mis	sing p	eaks		

Aligned peak list gap-filled									
Average		Do	ak ob	2011-04-18-16101.CDF 2011-04-18-11501.CDF		2011-04-18-14501.CDF			
m/z	Ret.time	Peak sn		Status	Area	Status	Area	Status	Area
87.0451	2.00			•	8.2E1	•	9.4E1		7.1E1
88.0407	2.01			•	6.4E1	•	7.8E1	•	7.0E1
89.0071	1.37			•	6.2E2		1.9E0	1	3.0E0
92.9289	0.47			•	5.8E2	•	3.4E2		4.7E2
93.0339	3.76			•	9.3E1	•	2.5E2		5.7E2
	m/z 87.0451 88.0407 89.0071 92.9289 93.0339	Average m/z Ret.time 87.0451 2.00 88.0407 2.01 89.0071 1.37 92.9289 0.47 93.0339 3.76	gened peak list gap-filled Average Peak m/z Ret.time 87.0451 2.00 88.0407 2.01 99.0071 1.37 92.9289 0.47 93.0339 3.76	gened peak list gap-filled Peak sh m/z Ret.time Peak sh 87.0451 2.00 88.0407 2.01 92.9289 0.47 93.0339 3.76	gened peak list gap-filled Average Peak sh 2011-04-18 m/z Ret.time Status 87.0451 2.00 Image: Colspan="3">Image: Colspan="3">Status 88.0407 2.01 Image: Colspan="3">Image: Colspan="3">Colspan="3" 88.0407 2.01 Image: Colspan="3">Image: Colspan="3">Colspan="3">Colspan="3"Colspan="3">Colspan="3"Col	gened peak list gap-filled Average Peak sh 2011-04-18-16101.CDF m/z Ret.time Peak sh Status Area 87.0451 2.00 8.2E1 8.2E1 88.0407 2.01 6.4E1 89.0071 1.37 6.2E2 92.9289 0.47 5.8E2 93.0339 3.76 9.3E1	gened peak list gap-filled Average Peak sh 2011-04-18-16101.CDF 2011-04-18 m/z Ret.time Peak sh Status Area Status 87.0451 2.00 8.2E1 6.4E1 6.2E2 92.9289 0.47 5.8E2 9.3E1 9.3E1 	Average 2011-04-18-16101.CDF 2011-04-18-11501.CDF m/z Ret.time Peak sh 2011-04-18-16101.CDF 2011-04-18-11501.CDF 87.0451 2.00 6.2E1 9.4E1 88.0407 2.01 6.4E1 7.8E1 89.0071 1.37 6.2E2 1.9E0 92.9289 0.47 5.8E2 3.4E2 93.0339 3.76 9.3E1 2.5E2	Average 2011-04-18-16101.CDF 2011-04-18-11501.CDF 2011-04-18 m/z Ret.time Peak sh Status Area Stat

Gap Filling (MZmine)

- ✓ This algorithm fills the gaps in the peak list from raw data according with the parameters defined by the user.
- The most crucial parameters are m/z tolerance and RT tolerance which define the window where the algorithm should find the new peak.

Comparison of number of total features

Seed extracts analyzed by HPLC-QTOF

MZmine

2529

44%

Tautenhahn et al. (2008)

Tautenhahn R, Bottcher C, Neumann S (2008) BMC Bioinformatics 9: 504.

Practical properties of MZmine, XCMS and MarkerLynx

	MZmine	XCMS	MarkerLynx	
Availability	Free	Free	Commercial	
User interface	 GUI* No requirement of programming skills 	 R software command line Some programming skills is required 	 GUI* No requirement of programming skills 	
Memory usage	 Adjustable to maximum available memory in the PC. Less efficient than XCMS e.g. 16 GB RAM = maximum ~2000 samples 	 Adjustable to maximum available memory in the PC e.g. 16 GB RAM = maximum ~5000 samples 	 Fixed e.g. maximum ~1000 samples 	
CPU usage	• Adjustable to maximum available CPU in the PC	• Adjustable to maximum available CPU in the PC	• Fixed	
Identification	 Basic identification tools. Automated advanced tool CAMERA is incorporated from XCMS 	 Automated advanced identification tool CAMERA 	 Basic identification tools 	
Coverage of preprocessing pipeline	• All steps	• Final feature table includes isotopic peaks	Gap filling is missing	
Visualization of the results	Yes	Yes	No	
Slide 23	Date : 20/09/2016		•	

Conclusions – Comparison of data preprocessing methods

- ✓ Considering the large number of peaks with varying peak shapes, so far there is no common method to evaluate the preprocessing algorithms from different software.
- ✓ Parameter settings: Evaluate based on your instrument Try several settings
- ✓ None of the software tools was able to extract all metabolites.
- ✓ Use more than one software tool.

Thank you for your attention!!

