Personalized Nutrition by Prediction of Glycemic Responses

Tal Korem Lab of Prof. Eran Segal Weizmann Institute of Science

Changes in our nutrition greatly contributed to the recent metabolic syndrome epidemic

General recommendations in nutrition

Source: USDA

Consumption of artificial sweeteners

Increase in artificial sweetener consumption is a major recent change in our nutrition

- 86% of Americans use 'diet' products
- Consumers spend \$21B per year on diet drinks

Artificial sweeteners are recommended for weight loss and for assisting in blood glucose control

AHA & ADA joint statement

ssociation

From Gardner et al., published July 2012 in Circulation and in Diabetes care:

"REPLACING SUGARY FOODS AND DRINKS WITH SUGAR-FREE OPTIONS CONTAINING NON-NUTRITIVE SWEETENERS IS ONE WAY TO LIMIT CALORIES AND ACHIEVE OR MAINTAIN A HEALTHY WEIGHT."

"WHEN USED TO REPLACE FOODS AND DRINKS WITH ADDED SUGARS, IT CAN HELP PEOPLE WITH DIABETES MANAGE BLOOD GLUCOSE LEVELS"

doi:10.1038/nature13793

ARTICLE

Artificial sweeteners induce glucose intolerance by altering the gut microbiota

Jotham Suez¹, Tal Korem²*, David Zeevi²*, Gili Zilberman–Schapira¹*, Christoph A. Thaiss¹, Ori Maza¹, David Israeli³, Niv Zmora^{4,5,6}, Shlomit Gilad⁷, Adina Weinberger², Yael Kuperman⁸, Alon Harmelin⁸, Ilana Kolodkin–Gal⁹, Hagit Shapiro¹, Zamir Halpern^{5,6}, Eran Segal² & Eran Elinav¹

Jotnam Suez

Eran Elinav

What is the effect of artificial sweeteners on mice?

Artificial sweeteners induce glucose intolerance in mice

- Lean mice
- ✓ Obese mice
- ✓ Different formulations
- ✓ Different doses
- Different mouse strains

Do artificial sweeteners interact with the microbiome?

What is the effect of artificial sweeteners on mice?

Antibiotics

Antibiotics reverse the effect of artificial sweeteners

A, Ciprofloxacin & Metronidazole (targets Gram-) B, Vancomycin (targets Gram+)

Transferring the microbiota of mice that consume artificial sweeteners transfers the glucose intolerance

Transferring the microbiota grown in the presence of artificial sweeteners transfers the glucose intolerance

Artificial sweeteners drive glucose intolerance in mice by altering the gut microbiota

... but what about people?

What happens to humans after just five days of consuming artificial sweeteners?

Artificial sweeteners induce glucose intolerance in most but not all individuals

After massive consumption

Transferring the microbiota of responders to artificial sweeteners transfers the glucose intolerance phenotype

Validation studies (2015)

CLINICAL INVESTIGATIONS

Diet Soda Intake Is Associated with Long-Term Increases in Waist Circumference in a Biethnic Cohort of Older Adults: The San Antonio Longitudinal Study of Aging

Sharon P.G. Fowler, MPH,* Ken Williams, MS,** and Helen P. Hazuda, PhD*

Positive association between artificially sweetened beverage consumption and incidence of diabetes

Allison C. Sylvetsky Meni^{1,2} & Susan E. Swithers³ & Kristina I. Rother¹

Diet Drink Consumption and the Risk of Cardiovascular Events: A Report from the Women's Health Initiative

Ankur Vyas, MD¹, Linda Rubenstein, PhD², Jennifer Robinson, MD, MPH^{1,2}, Rebecca A. Seguin, PhD, CSCS³, Mara Z. Vitolins, DrPH, MPH, RD⁴, Rasa Kazlauskaite, MD, MSc, FACE^{5,6}, James M. Shikany, DrPH⁷, Karen C. Johnson, MD, MPH⁸, Linda Snetselaar, RD, PhD², and Robert Wallace, MD, MSc^{2,9}

If nutritional changes drove the metabolic syndrome epidemic, can it be treated by restoring healthy nutrition?

What is healthy nutrition?

1972

How can we take a science-based approach to nutrition?

David Zeevi

What should a marker of healthy nutrition satisfy?

Relevant for weight management

Relevant for metabolic disease

Easily measurable quantitatively

Postprandial (post-meal) glucose response as a measure of healthy nutrition

Bonora et al., *Diabetologia* 2001; Cavalot et al., *Diabetes Care* 2011; Wang et al., *Diabetes Care* 2004; Temelkova-Kurktschiev et al., *Diabetes Care* 2000; O'Keefe et al., Am J Cardiol 2007

Maintaining normal blood glucose levels is key to fighting the rise in disease

People have widely different glucose responses to the same food

Adapted from Vega-López et al., Diabetes Care 2007

Diets that maintain normal blood glucose levels must be personally tailored

What could affect our response to food?

The microbiome affects our response to food

Koeth et al., Nature Medicine 2013

Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome

Vrieze et al, Gastroenterology 2012

What could affect our response to food?

The Personalized Nutrition Project: Clinical and microbiome data collected

Continuous glucose monitoring

The Personalized Nutrition Project

The Personalized Nutrition Project: Cohort statistics

Cohort bacterial composition comparable to other international cohorts

What is the variability across people in the response to the same food?

Testing the cohort response to standardized meals

The same person has a highly similar post-meal response to the same standardized meal across different days

Different people have widely different post-meal responses to the same standardized meal

Different people have opposite responses to different standardized meals

Different people have widely different post-meal responses to the same real-life meals

General recommendations in nutrition

Source: USDA

What explains the variability in people's response to the same food?

Variability in post-meal glucose response across people associates with microbiota composition and function

Variability in post-meal glucose response across people associates with microbiota composition and function

- Positive association with PPGR to glucose + bread
- High levels associate with a high-fat low-fiber diet (Wu et al., 2011)

Positive association between ABC transporters and post-meal glucose response to all standardized meals

- Positive association with **TIIDM** (Karlsson et al., 2013)
- Positive association with western high-fat/high-sugar diet (Turnbaugh et al., 2009)

Can we predict the personal post-prandial glucose response to any complex meal?

Meal Carbohydrates: State of the art in predicting post-meal glucose responses

Prediction scheme

Model features

Accurate predictions of personalized glucose responses

Can personally tailored dietary interventions improve post-prandial glucose responses?

Constructing personally tailored diets that achieve normal post-prandial glucose responses

Can you distinguish between the good and bad menus?

Can you distinguish between the good and bad menus?

A 'good' meal for one person can be a 'bad' meal for another

Personally tailored diets reduce the post-prandial glucose response

Personally tailored diets improve post-meal responses

Dietary interventions targeting post-meal glucose responses induce consistent changes in microbiota

			_	
-0.5	-0.25	0	0.25	0.5

Dietary interventions targeting post-prandial glucose responses induce consistent changes in microbiota

- *Bifidobacterium adolescentis* decreases during 'good' week.
- Low levels associated with greater

weight loss (Santacruz et al., 2009)

Dietary interventions targeting post-meal glucose responses induce consistent changes in microbiota

Roseburia inulinivorans increases

following the 'good' diet week

Low levels associate with TIIDM

(Qin et al., 2012)

Summary

Artificial sweeteners induce glucose intolerance driven

by gut microbial changes

- **High interpersonal variability** in post-meal glucose observed in an 800-person cohort
- Using personal and microbiome features enables accurate glucose response prediction
- Short-term personalized dietary interventions successfully lower post-meal glucose

Segal Lab

David Zeevi Adina Weinberger Daphna Rothschild Nastya Godneva Tali Avnit-Sagi Maya Pompan-Lotan Elad Matot Dar Lador Michal Rein Orly Ben Yaakov Rony Bikovsky Noa Kossower Gal Malka

Elinav Lab

Niv Zmora Jotham Suez

Jamel Abu-Mahdi Gili Zilberman-Schapira Lenka Dohnalova´ Merav Pevsner-Fischer Christoph Thaiss **Kfar Shaul Medical Center** Dr. David Israeli

Tel-Aviv Sourasky Medical Center Prof. Zamir Halpern

The Foulkes Foundation

