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• Human large intestine hosts an enormous number 
of microbes (“microbiota”)

– 100,000,000,000,000 (1014) bacterial cells

– Greater than the number of human cells

• Thousands of different species colonise

– Most are strict anaerobes

– Each host have a unique and largely stable microbiota

• The cumulative “microbiome” of these cells 
contains 400x more unique genes than the human 
genome

– est. 8 million vs ~20-25,000

• Plays a number of key roles in maintaining host 
health

– Enhances resistance against infection

– Immune system development/maintenance

– Beneficial compound production

– Breakdown dietary fibre

The human intestinal microbiota

Lawley & Walker (2013) Immunology 138, 1-11



Principal substrates available for utilisation by 
intestinal microbes

Adapted from Cummings & Macfarlane (1991)

Resistant starch

Non-starch polysaccharides

Unabsorbed sugars

Oligosaccharides

Dietary protein

Enzymes / secretions / mucus

5040302010

Amount (gram per day)

Of dietary & intestinal origin: range

Digestibilities for plant cell wall polysaccharides – 7 subjects (Slavin et al J. Nut 1981)

Pure cellulose (Solka Flok) minimal  
Cellulose (in  normal diets) 69.7% (+/-10.7)
Hemicellulose 71.7% (+/- 5.4)

[Harry Flint]



• Metabolise dietary components that escape 
digestion by human enzymes 
– Endows host with degradative capabilities they have not 

needed to evolve themselves

• Vitamin production
– K, riboflavin (B2), biotin (B7), folic acid (B9), cobalamin (B12)

• Release of phytochemicals
– Phenolic compounds etc

• Primary end products are short chain fatty 
acids
– Acetate (C2), propionate (C3) and butyrate (C4)

• SCFAs are symbiotic compounds
– Gut epithelial cells grow on products of bacterial 

metabolism

– Derive up to 70% of energy needs from bacterially-
produced butyrate

– Increases energy yield from diet (5 to 10% of caloric intake 
per day)

oligo-, mono-saccharides

complex polysaccharides

Short chain fatty acids

Polysaccharide
degraders

saccharolytic bacteria

Anaerobic
fermentation

Fibre utilisation by gut microbes



oxaloacetate

fumarate

succinate

propionyl-CoA

fucose, rhamnose

propane-1,2-diol

propionyl-CoA

DHAP  +  L-lactaldehydePEP

CO2

lactate

lactoyl-CoA

propionyl-CoA

pyruvate

propionate

hexoses & pentoses

acetyl-CoA

acetoacetyl-CoA

butyryl-CoA
acetate    

acetyl-CoA

butyrate

acetate

butyryl-P

H2 + CO2

formate

Roseburia inulinivorans
Ruminococcus obeum
Salmonella enterica

methane

Bacteroidetes
some Negativicutes

Coprococcus catus
Megasphaera elsdenii

Ruminococcus
bromii

Eubacterium rectale
Eubacterium hallii
Roseburia spp.
Anaerostipes spp.
Coprococcus catus
Faecalibacterium prausnitzii

Coprococcus eutactus
Coprococcus comes

ethanol

Blautia
hydrogenotrophica

Eubacterium hallii
Anaerostipes spp.

methanogenic
archaea

hydrogen
sulphide

sulfate

Desulfovibrio spp.

Major fermentation pathways

Adapted from Louis et al., Nat Rev Microbiol (2014)



• Inhibition of histone deacetylase (butyrate, propionate)

• Altered mucosal gene expression, cell differentiation

• Protection against colorectal cancer, colitis (butyrate)

• Energy source for the colonic epithelium (butyrate)

• Anti-inflammatory effects (including stimulation of Tregs)

• Suppression of colitogenic pathogens (acetate)

• Stimulation of host receptors (FFAR2, FFAR3, GPR109)

• Influence on gut hormones (e.g. GLP-1, PYY) and satiety

• Influences upon gut transit, gut barrier function

• Peripheral energy supply, lipogenesis (acetate)

• Promote intestinal gluconeogenesis (butyrate, propionate)

Impact of gut bacterial short chain fatty acids on the host

Lactate accumulation shown to be due 
mainly to reduced lactate utilization by 
other bacteria at pH 5.2 (13C lactate)
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(Vernia et al 1988)

[Harry Flint]

Belenguer, A. et al (2007) A.E.M. 73, 6526-6533.



• Many diseases are caused by 
microbes that normally live 
asymptomatically on the 
host
– e.g. Staphylococcus aureus

(MRSA), Strep throat, gingivitis, 
acne, meningitis, pneumonia, C. 
difficile diarrhoea, thrush, UTIs, 
gastric cancer (Helicobacter 
pylori).

• A general imbalance 
(“dysbiosis”) in microbiota 
composition has been 
implicated in many disorders
– e.g. Inflammatory bowel 

diseases, bowel cancer, irritable 
bowel syndrome, diabetes, liver 
disease, allergies, atherosclerosis

Round & Mazmanian (2009) Nat. Rev. Immun. 9;313 

Host-associated microbes in disease
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The “Western” diet, microbiota and host health

Koeth R.A. et al. (2013) 
Nat. Med. 19;576-585

Tang W.H. et al. (2013) NEJM 368; 1575-1584



Walker & Lawley (2013) Pharmacol. Res. 69:75-86. 

Altering the intestinal microbiota

Antimicrobials/
Pharmabiotics Probiotics Diet Faecal transplants

• The aim of all of these approaches is to shift the composition 
of the microbiota to a more beneficial state
– Is targeted manipulation possible via alterations in host diet?



Short- v long-term impacts of diet on the intestinal 
microbiota

• Changes in long-term dietary 
patterns illicit extensive changes 
in microbiota composition

• Short term dietary regimes can 
result in reproducible but limited 
microbiota response



Disappearing human microbiota?
• Have host behavioural changes in the urbanisation era introduced changes in 

microbiota composition?

Hunter (2012) EMBO 
reports.13, 498–500 

Round & Mazmanian (2009) Nat. Rev. Immun. 9;313 



Link between diet, oral microbiota and health
Hunter-gatherer Neolithic agriculturist Medieval agriculturist

• Calcified plaque – one of the only preserved 
records of bacteria 

• Densely colonised by oral microbiota

Adler C.J. et al., (2013) Nature Genetics 45, 450-455

Dobney et al., 1994

Image: Dr Jo Buckburry (re-plotted from Moore and Corbett 1978)
http://www.leeds.ac.uk/yawya/bioarchaeology/Dental%20disease.html

• Increased caries rate in skeletal 
records is linked to increased 
consumption of carbohydrates

• Unknown whether or not these 
changes were accompanied by 
shifts in microbiota composition



Oral microbiota changes through history

• Non-pathogenic Ruminococcaceae associated with hunter-gatherers

• Decay-associated Veillonellaceae increase post-farming

Relatively stable 
diversity estimates

Decrease in bacterial 
diversity since the 
industrial revolution
(P = < 0.001)

Adler C.J. et al., (2013) Nature Genetics 45, 450-455



[Alan Cooper – University of Adelaide]

Changes in predominant oral pathogens as a result 
of diet and culture

• These pathogens do not appear to be prominent in hunter-gatherers

• Streptococcus mutans became dominant relatively recently

• Shifts correlate with human behavioural changes (e.g. diet)



• We may need to reconsider what we think of as a normal “healthy” intestinal 
microbiota
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Regional variations in gut microbiota composition
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Links between host diet and microbiota structure

Wu et al. (2011) Science 334;105-8 

• Microbiota structures are associated with long term dietary consumption patterns



O’Keefe et al., Nat. Commun. (2014), 6:6342 

• O’Keefe et al performed 2-week food 
exchanges

• African Americans were fed a high-fibre, low-
fat African-style diet and rural Africans a high-
fat, low-fibre western-style diet 

• Resulted in measurable changes in health 
biomarkers
–  butyrogenesis,  secondary bile acid 

synthesis in the African Americans

Links between host diet and microbiota activity



Duncan SH, et al., (2007) A.E.M. 73:1073-8

Impact of low carbohydrate weight loss diets

** P < 0.001
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**
**

**

0

10

20

30

40

50

60

70

80

90

Acetate Propionate Butyrate Iso butyrate Iso Valerate

Fa
ec

al
 c

on
ce

nt
ra

ti
on

  (
m

M
) 

   
1

High

Moderate

Low

Fa
e

ca
l S

C
FA

 
le

ve
ls

 (
m

M
)

% Eubacterial (Eub338) count in faeces

***

***
*

***

*

*

0

5

10

15

20

25

30

35

40

Bac303

Fpra
u645

Rfla
729 +

 R
bro

730

Bif1
64

Ere
c482

Pro
p853

Rre
c584

Ere
c - 

Rre
c

lo
g 1

0 to
ta

l

Bacterial group (probe)

%
 E

ub
33

8 
or

 E
ub

33
8 

/g
   

  
High

Moderate

Low

M
ic

ro
b

io
ta

 
co

m
p

o
si

ti
o

n

• Low CHO diet leads to reduction in 
butyrate-producing bacteria

• Reduced faecal butyrate levels

High CHO – 400 g/d
Moderate CHO – 170 g/d
Low CHO – 23 g/d
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Russell  WR et al., AJCN (2011) 93, 1062-72

Major fibre derived phenolics in faecal samples 

• Low carbohydrate, high protein intake resulted in reduced 
concentrations of potentially cancer–protective plant 
phenolic derivatives



14 obese male volunteers with metabolic syndrome (mean age 54 years, mean BMI 39.4 kg/m2)

M NSP RS HPMC

1 wk 3 wks 3 wks 3 wks

Collection of faeces

M NSPRS HPMC

Mean dietary intake [g/d]:

M 427 230 5 28 103 126

NSP 427 138 2 42 102 136

RS 434 275 26 13 109 127

HPMC 201 110 3 22 144 63

CHO: carbohydrate

Diet                  CHO          Starch           RS               NSP Protein         Fat

Weight 
maintenance

Weight loss

Resistant starch vs non-starch polysaccharide diet

M: Weight maintenance, mixed diet (55% energy from carbohydrates)

NSP : High non-starch polysaccharides (added bran), low RS

RS: High resistant starch (Type III), reduced NSP

HPMC: Reduced calorie intake. Increased % protein, moderate carbohydrate

Walker AW.  et al (2011) ISME J 5, 220-230
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Resistant starch vs non-starch polysaccharide diet

Stimulated by NSP  Stimulated by RS

• Samples cluster by donor, 
not by diet

• Sub-group of bacteria are 
highly responsive to both 
the NSP and RS-enriched 
diets
– More Ruminococcaceae species 

increase with RS

– More Lachnospiraceae species 
increase with NSP

Salonen, A. et al (2014) ISME J 8, 2218-30.
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Resistant starch v non-starch polysaccharide diet
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Keystone species within the microbiota



Links between diet, microbiota and health

Walker AW & Duncan SH. MNFR (In Prep.)



Conclusions
• Long-term dietary patterns have significant impacts on both intestinal 

microbiota composition and activity
– Fibre consumption appears to be a major driver

• Microbiota composition and activity are strongly correlated with markers of 
host health/disease
– Mechanistic studies now starting to emerge that link diet/microbiota/health

• Specific bacterial groups/species respond strongly to dietary change, but there 
is inter-individual variation in the groups that respond

• Many gut bacteria appear to be nutritionally specialised; these species are 
likely to show the greatest responses to dietary manipulation
– ‘Keystone’ species may determine the ability to ferment insoluble substrates

• Implications for therapeutic dietary intervention:
– The response may depend on the underlying microbiota composition of a 

given individual
– Need continued and improved characterisation of the microbiota in order to 

predict responses to dietary manipulation

Contact : alan.walker@abdn.ac.uk



Protection 
against 

colorectal 
cancer and 

colitis

Exposure to 
metabolites 
and bacteria 
that promote 

disease

supply of short chain fatty acids
phytochemicals in colon

colonic pH

Fermentable carbohydrates:

Interplay between diet
and microbiota

phenols, amines, indoles, N-
nitroso compounds,

H2S, amines, bile acids,
faecapentaenes, heme

Nutrient supply to mucosa

Barrier against infection

Release of phytochemicals

[Sylvia Duncan]

Interplay between diet and microbiota on gut health
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