

Methods to assess effects of prebiotics in humans

Lieselotte Cloetens^{1,2}, Willem F. Broekaert^{3,4}, Björn Åkesson¹, Gunilla Önning¹, Jan A. Delcour³, Kristin Verbeke²

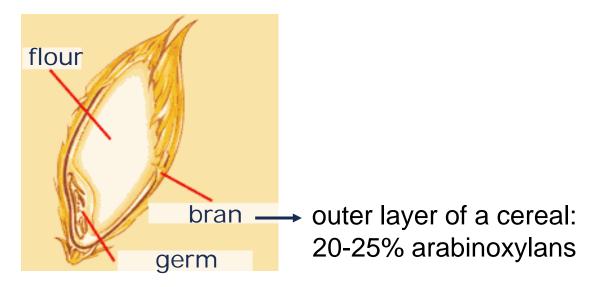
¹Biomedical Nutrition, Pure and Applied Biochemistry, Lund University, Lund, Sweden ²Laboratory of Digestion and Absorption, TARGID, Catholic University of Leuven, Leuven, Belgium ³Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Center (LFoRCe), Catholic University of Leuven, Leuven, Belgium ⁴Fugeia NV, Leuven, Belgium

Prebiotics

non-digestible food ingredients that beneficially affect the host by selectively stimulating the growth and/or activity of one or a limited number of bacteria in the colon, and thus improve host health (Gibson et al., Nutr Res Rev 2004;17:259-275)

Health-promoting bacteria: bifidobacteria and lactobacilli

Health-related effects:

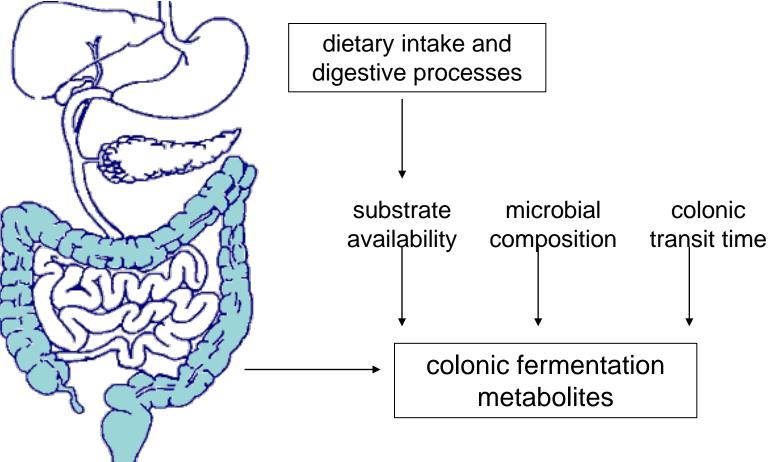

- effects on gastrointestinal transit
- improvement of mineral absorption
- lipid-lowering effects
- reduced risk of colon cancer
- reduced protein fermentation

Prebiotics

Fructo-oligosaccharides (FOS) and inulin: well-known prebiotics

Arabinoxylan-oligosaccharides (AXOS): prebiotic potential?

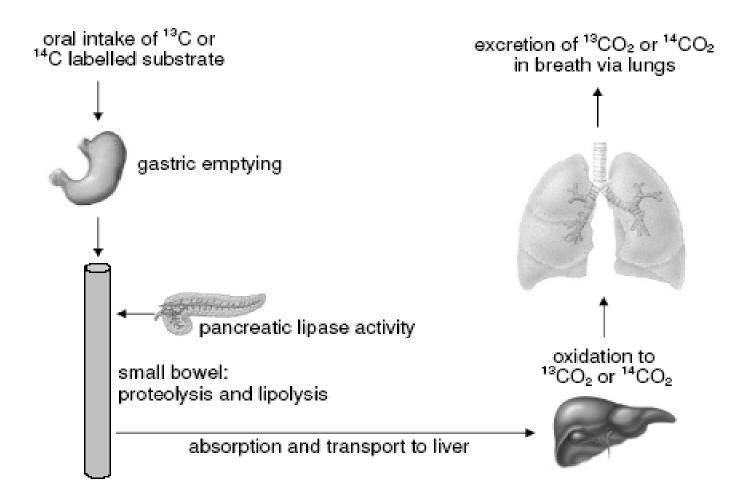
= degradation products of arabinoxylan


Methods

- Gastrointestinal parameters

 Motility and digestion
- Prebiotic effects
 - o Microbial composition
 - $\circ\,$ Metabolic activity of the microbiota

Motility and digestion


Digestive processes

• In the proximal GI-tract:

- o gastric emptying rate (GE)
- o lipid digestion
- o protein digestion
- o oro-caecal transit time (OCTT)
- o (total gastrointestinal transit)

prebiotics can alter digestion and absorption of other nutrients:
 physicochemical properties (viscosity, water-holding capacity and osmolarity)

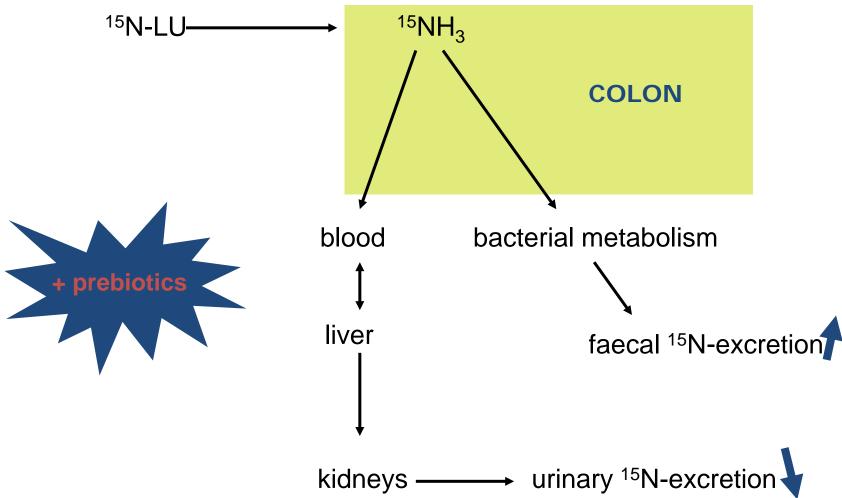
Breath tests

GI parameters

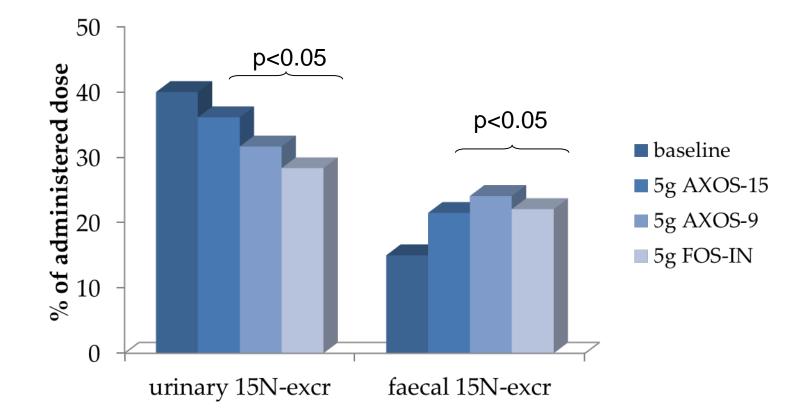
parameter	labelled substrate	dose	sample collection
gastric emptying ¹	[¹³ C]-octanoic acid or [¹⁴ C]-sodium octanoate	91mg 74kBq	4h
oro-caecal transit time ^{2,3}	lactose-[¹³ C]-ureide or inulin-[¹⁴ C]-carboxylic acid	500mg 74kBq	10h
protein digestion ⁴	egg protein intrinsically labelled with [¹³ C]-leucine	200mg	6h
lipid digestion ⁵	[¹³ C]-mixed triglyceride	250mg	6h

¹ Ghoos et al. Gastroenterology 1993
 ² Geypens et al. J Nucl Med 1999
 ³ Verbeke et al. Aliment Pharmacol Ther 2005
 ⁴ Evenepoel et al. J Nutr 1997
 ⁵ Vantrappen et al. Gastroenterology 1989

Methods

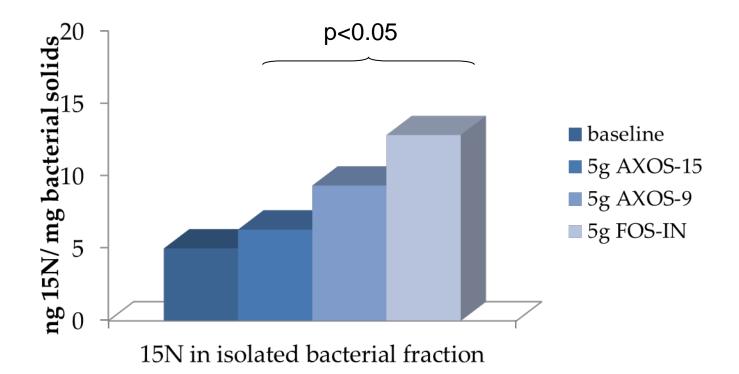

- Gastrointestinal parameters

 Motility and digestion
- Prebiotic effects
 - o Microbial composition
 - o Metabolic activity of the microbiota


Metabolic activity of microbiota

• Lactose-[¹⁵N,¹⁵N']-ureide to measure colonic ammonia metabolism

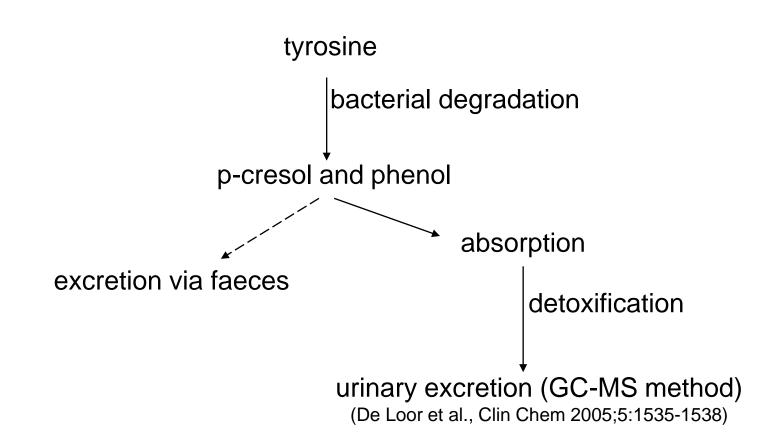
Lactose-[¹⁵N,¹⁵N']-ureide


Urinary and faecal ¹⁵N-excretion

significant shift from urinary to faecal ¹⁵N-excretion

Cloetens et al., Am Coll Nutr 2008 Cloetens et al., Br J Nutr 2010

¹⁵N-excretion in bacterial fraction


significant increased uptake of nitrogen by bacteria due to stimulation of bacterial growth/activity

Cloetens et al., Am Coll Nutr 2008 Cloetens et al., Br J Nutr 2010

Metabolic activity of microbiota

- Lactose-[¹⁵N,¹⁵N']-ureide to measure metabolic ammonia metabolism
- P-cresol and phenol to measure protein fermentation

Phenolic compounds

urinary excretion of p-cresol and phenol is a measure of the extent of colonic protein fermentation

Phenolic compounds

- Prebiotics: decreased proteolytic activity, less pcresol and phenol excretion
 - increased carbohydrate fermentation = saccharolytic activity
 - o increased uptake and assimilation of nitrogen
 - o decreased colonic pH
 - o reduced protease activity

- Results
 - significantly decreased amount of p-cresol after 10g AXOS

Metabolic activity of microbiota

- Lactose-[¹⁵N,¹⁵N']-ureide to measure metabolic ammonia metabolism
- P-cresol and phenol to measure protein fermentation
- **Bacterial enzyme activities:** β-glucuronidase and β-glucosidase

Bacterial enzymatic activities

toxic or carcinogenic compounds

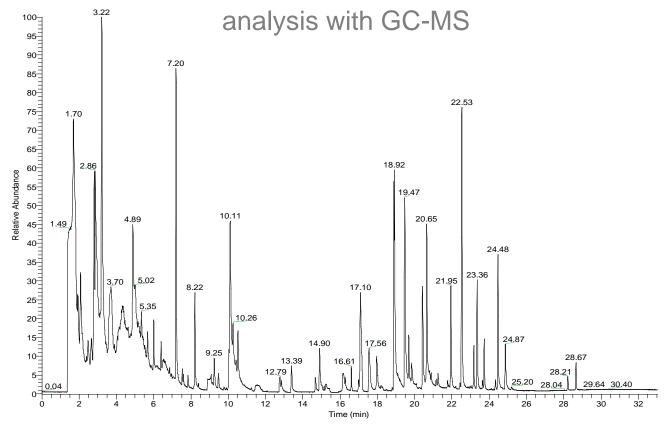
detoxification

glucuronide, glucoside

COLON

LIVER

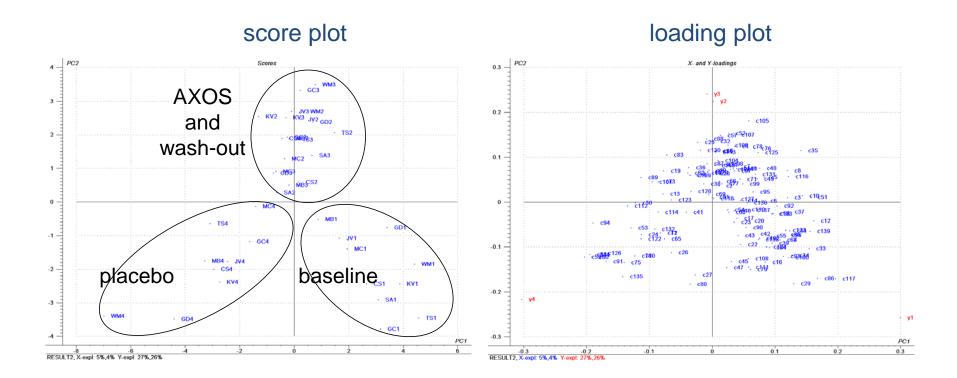
bacterial enzyme activities: **ß-glucuronidase ß-glucosidase** (Caldia and Carbook - Matl Core


(Goldin and Gorbach, J Natl Cancer Inst 1976;57:371-375)

toxic or carcinogenic compounds

Metabolic activity of microbiota

- Lactose-[¹⁵N,¹⁵N']-ureide to measure metabolic ammonia metabolism
- P-cresol and phenol to measure protein fermentation
- **Bacterial enzyme activities:** β-glucuronidase and β-glucosidase
- Metabolic profiles of volatile organic compounds


Volatile organic compounds

±60 volatile organic components per sample

Metabolic profiles

multivariate data analysis

discrimination was explained by differences in diet

Methods to assess effects of prebiotics in humans

Lieselotte Cloetens^{1,2}, Willem F. Broekaert^{3,4}, Björn Åkesson¹, Gunilla Önning¹, Jan A. Delcour³, Kristin Verbeke²

¹Biomedical Nutrition, Pure and Applied Biochemistry, Lund University, Lund, Sweden ²Laboratory of Digestion and Absorption, TARGID, Catholic University of Leuven, Leuven, Belgium ³Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Center (LFoRCe), Catholic University of Leuven, Leuven, Belgium ⁴Fugeia NV, Leuven, Belgium