Regulation of Liver and Adipose Tissue Lipogenesis in Human Obesity

Ludger Scheja

NuGO Week 2011, Wageningen

De Novo Lipogenesis (DNL) Pathway

SCD: stearoyl CoA desaturase

ELOVL6; fatty acid elongase-6

De Novo Lipogenesis (DNL) in Mice

- Mice efficiently convert dietary carbohydrates to fatty acids
- Liver DNL is up-regulated in obese mice; mechanisms:
 - Hyperinsulinemia (SREBP1c)
 - Increased glucose flux (ChREBP)
- DNL-linked fatty acid elongase ELOVL6 has adverse metabolic effects (Matsuzaka et al. 2007, Nat Med 13:1193)
- Adipose Tissue DNL is down-regulated in obesity
- DNL-derived palmitoleic acid (C16:1) counteracts insulin resistance (Cao et al. 2008, Cell 134:933)

De Novo Lipogenesis (DNL) in Humans

- Dietary carbohydrates is converted to fatty acids by fatty acid synthase (FASN)
- Obese subjects have a higher rate of hepatic DNL than lean subjects
- FASN mRNA is down-regulated in adipose tissue in obesity
- Common polymorphisms in FASN gene are associated with BMI

Aim of the Study

Characterize the regulation of DNL in human obesity

- Expression of biosynthetic enzymes
- DNL-derived fatty acids
- Link to metabolic disease parameters

Study Cohort

- Tissue bank, Dept. of Surgery, University of Ulm (Anna Wolf, Uwe Knippschild)
- Surgery patients: morbid obesity > non-metastatic cancer > other cases (no liver disease)
- Patients with liver and adipose tissue samples: n=165

Study Cohort: HOMA-IR

Liver FASN Expression versus BMI

Liver FASN Expression versus BMI

Liver FASN Expression versus HOMA-IR, Liver TG, CRP

HOMA-IR

Liver FASN Expression versus HOMA-IR, Liver TG, CRP

Liver TG **HOMA-IR** 5.5 5.5 log FASN (rel expression) 5.0 5.0 log FASN (rel expression) 4.5 4.5 4.0 3.5 3.0 R = 0.58 3.0 P < 10⁻¹⁰ R = 0.422.5 P < 10⁻⁷ 2.5 2.0 2.0 -1.0 0.0 1.0 2.0 -6.5 -5.5 -4.5 -3.5 -2.5 log HOMA-IR log liver TG content

Liver FASN Expression versus HOMA-IR, Liver TG, CRP

Experimental Subgroups

 Gender-matched, (partially) age-matched, n=20, <u>controls</u> (lean and overweight), <u>obese</u>, <u>obese+T2D</u> (type 2 diabetes)

Experimental Subgroups

 Gender-matched, (partially) age-matched, n=20, <u>controls</u> (lean and overweight), <u>obese</u>, <u>obese+T2D</u> (type 2 diabetes)

Experimental Subgroups

 Gender-matched, (partially) age-matched, n=20, <u>controls</u> (lean and overweight), <u>obese</u>, <u>obese+T2D</u> (type 2 diabetes)

Liver DNL Gene Expression

Liver DNL Gene Expression

Liver DNL Gene Expression

Visceral Adipose Tissue (VAT) Lipogenic Gene Expression

Visceral Adipose Tissue (VAT) Lipogenic Gene Expression

Visceral Adipose Tissue (VAT) Lipogenic Gene Expression

VAT Westernblots

• FASN, upstream DNL proteins

VAT Westernblots

 $ACC\alpha$

1-way ANOVA: Repeated T-TEST Tukey-Kramer test to correct for multiple comparison

VAT Westernblots

CD36 а

1.5

Female obese + diabetic

1-way ANOVA: Repeated T-TEST Tukey-Kramer test to correct for multiple comparison

Palmitoleate (C16:1) in Mouse Adipose Tissue

 Biosynthetic capacity DNL severely impaired in obese adipose tissue => is this reflected in fatty acid patterns ?

Palmitoleate (C16:1) in Mouse Adipose Tissue

 Biosynthetic capacity DNL severely impaired in obese adipose tissue => is this reflected in fatty acid patterns ?

DNL-Derived Fatty Acids in Human VAT

T-Test vs. controls, * p< 0.05

Summary and Conclusions – Human Liver

• The DNL pathway is profoundly induced in liver of (morbidly) obese humans

Summary and Conclusions – Human Liver

- The DNL pathway is profoundly induced in livers of (morbidly) obese humans
- Liver FASN expression correlates strongly with HOMA-IR, indicating a link to liver insulin resistance/hyperinsulinemia

Summary and Conclusions – Human Liver

- The DNL pathway is profoundly induced in livers of (morbidly) obese humans
- Liver FASN expression correlates strongly with HOMA-IR, indicating a link to liver insulin resistance/hyperinsulinemia
- The induction of liver ELOVL6 may support insulin resistance by increasing synthesis of stearic acid (C18:0), as described in mice (Matsuzaka et al. 2007, Nat Med 13:1193)

Summary and Conclusions: Human VAT

 Except for SCD, the DNL pathway is strongly suppressed in (diabetic) obese humans

Summary and Conclusions: Human VAT

- Except for SCD, the DNL pathway is strongly suppressed in (diabetic) obese humans
- Down-regulation of GLUT4 protein in insulin resistant subjects is consistent with a crucial role of GLUT4 for whole body insulin sensitivity (Abel et al., 2001, Nature 409:729)

Summary and Conclusions: Human VAT

- Except for SCD, the DNL pathway is strongly suppressed in (diabetic) obese humans
- Down-regulation of GLUT4 protein in insulin resistant subjects is consistent with a crucial role of GLUT4 for whole body insulin sensitivity (Abel et al., 2001, Nature 409:729)
- Palmitoleate (C16:1) does not drop in obesity (compensation by liver)

Ongoing/Future Work

- Fatty acid profiling in liver and plasma
- Gene expression changes in adipose tissue after weight loss
- Study liver pathology
- Lipidomics (DNL biomarker)

Acknowledgements

Department of Surgery, Ulm

Uwe Knippschild Anna Wolf

Mount Sinai School of Medicine, New York

Thomas Scherer Christoph Büttner

Department of Surgery, Maastricht

Sander Rensen

Dept. of Biochemistry, Hamburg

Leah Eissing Klaus Tödter Jörg Heeren

Appendix

Study Cohort: Liver Steatosis

Study Cohort: CRP

Liver FASN Westernblot

Correlation VAT GLUT4 - HOMA-IR

Mouse Adipose Tissue Macrophage Infiltration

 In mice, obesity is accompanied by massive macrophage infiltration in white adipose tissue

Expression of Macrophage Markers in Human VAT

Inflammatory Cytokine Expression in Human VAT

Adipose Tissue Gene Expression After Weight Loss

- Bariatric surgery, performed at Maastricht University Hospital
- Subcutaneous adipose tissue samples before and after intervention

Liver Transcription Factor Expression

Title

Matsuzaka et al., Nature Medicine 13, (2007) Crucial role of a long-chain fatty acid elongase, EloyI6, in obesity-induced insulin resistance Text

Elovl6 knockout

Elovl6 forced expression