14th NuGO Week 2017, Varna

Linking of Omics-based Biomarkers with Nutrition and Metabolic Outcomes in Chinese

Xu Lin, MD., PhD.

Professor

Shanghai Institutes for Biological Sciences Chinese Academy of Sciences

August 29, 2017

Nutrition & Metabolism Owned by Springer Nature

Editor-in-Chief:

- Dr. Xu Lin
- Dr. Malcolm Watford
 Impact Factor:
- 5-yr Impact Fact: 3.525

Nutrition & Metabolism

- Timely and rigorous peer reviewed
 Reputable OA journal over a decade
- The main focused on

Integrating nutrition, exercise physiology, clinical investigations, and molecular and cellular biochemistry of metabolism.

Journal scope:

welcomes studies on molecular, cellular and human metabolism

nutritionandmetabolism.biomedcentral.com

Outline

Background

Finding from our studies

- Observational studies
- Intervention trials
- Currently ongoing studies

Nutrition Transition in China

↑ Energy intake from animal foods

↑ Energy intake from fats

Epidemiology of Obesity

Global: 39% adults with overweight , 12.9% adults with obesity
 China: 34.4% adults with overweight , 6.9% adults with obesity
 --- the largest obese population in the world

Prevalence of Type 2 Diabetes in Chinese

Prevalence of Diabetes in 2012 (%)

JAMA (2013)

High Susceptibility of Metabolic Diseases in Asians

Multivariate RR of Diabetes among Women with Different Ethnical Backgrounds in the Nurses' Health Study

Few Chinese cohort studies have systematically investigated the roles of genetic and environmental factors for metabolic diseases

What are nutritional needs and effects of genetic and environmental factors on metabolic risks in Chinese?

Dbesity, Metabolic Syndrome (MetS Type 2 Diabetes (T2DM)

Outline

Background

Finding from our studies

- Observational studies
- Intervention trials
- Currently ongoing studies

Nutrition and Health of Ageing Population in China

To investigate the effect of genetic and environmental factors and their interactions on metabolic diseases

Nutrition and Health of Ageing Population in China

Baseline	Gene & Environmen	t Phenotype	Disease
Beijing (n=1600)	Genetic factors • GWAS database -2M SNPs -100k CNVs • Exome SNPs	Anthropometric Data: BP, BMI, waist/hip body composition (DXA) Biomarkers: • CRP, IL6, TNFR1/2 • Adiponectin, RBP4,	 Type 2 diabetes Metabolic syndrome Cardiovascular disease Kidney function decline
Shanghai (n=1600)	 Diet Lifestyle Mental health 	 Resistin, PAI-1 Glucose, Insulin, lipids, HbA1c Ferritin, vitamin D, vitamin B1 Fatty acids profile Amino acids profile Acylcarnitine profile lonomic profile 	
2005	1 1 1 1		2011

GWAS Database for Obesity and Type 2 Diabetes

Lead National Type 2 Diabetes GWAS in China

- Identified 2 novel (RASGRP1 and GRK5), 23 reported loci for T2D in ~43,000 individuals
- Acquired >0.56M SNPs covering >92% common variants and >1000 common CNVs in Chinese
- Acquired >15M SNPs and CNVs imputed from HapMap and 1000Genome

Lead and joining >10 international GWAS collaborations

- Obesity: 15 novel loci, 62 reported loci
- Height: 17 novel loci, 81 reported loci
- Blood pressure: 27 novel loci, 23 reported loci
- HbA1c: 4 novel loci, 5 reported loci
- Fatty acids: 7 novel loci, 11 reported loci

Nature (2017), *Nat Genet* (2015, 2017), *Nature Med* (2017), *JAMA oncology* (2016), *Hum Mol Genet* (2016, 2014&2012), *Diabetes* (2013), *Hypertension* (2013), *Diabetes* (2013), *Diabetologia* (2014, 2012, 2011&2010) *J Lipid Res* (2013, 2017), *AJCN*(2012), *PLoS Genet* (2010)

Genetic Predisposition of Obesity

- ↑ Genetic Risk Score (28 BMI-increasing risk loci like FTO, MC4R, PCSK1), ↑BMI, ↑ total and trunk fat percentage (DXA)
- Physical activity genetic predisposition for raising BMI

PLoS One (2014)

Genetic Predisposition of Obesity with Diabetes

- Cenetic Risk Score (30 BMI-increasing risk loci, like FTO, MC4R and PCSK1) was associated with T2D
- The association was independent of BMI in Chinese, partly mediated by HOMA-B

Diabetologia (2014)

Established Erythrocyte Fatty Acid Database

A total of 28 types of fatty acids were detected in 3252 participants

- Trans FA 18:1t isomer 18:2n6 9c12t 18:2n6 9t12c
- PUFA n-6

 18:2n6
 18:3n6
 20:2n6
 20:3n6
 20:4n6
 22:2n6
 22:4n6
 22:5n6
- PUFA n-3

 18:3n3 20:5n3 22:5n3 22:6n3
- SFA
 14:0 16:0 18:0 20:0 22:0 24:00
- MUFA 16:1n9 16:1n7 18:1n9 18:1n7 20:1n9 22:1n9 24:1n9

- Most of cohort studies were from western populations
- Commonly used dietary questionnaires could introduce many measurement errors
- Erythrocyte fatty acids reflect relatively long-term of intakes (essential and trans fatty acids), particularly important for countries without relevant food composition database like China
- Evidence regarding the relationships of blood fatty acids with MetS or T2D is limited, and remains controversial

n-3 Fatty Acids and Metabolic Syndrome

DHA ^Number of Metabolic Syndrome Components

JCEM (2012)

Trans-Fatty Acids and Metabolic Disorders

- Total of TFAs are low (0.37 % vs 1.8 % in US studies)
- Trans-18:1 isomers (>50% of total TFA) was associated with dairy products

The association between ↑ Trans 18:1 and ↓ 6-yr T2D Incidence was dairy dependent

Trans-18:2 was associated with dyslipidemia risk

↑Dairy intake was associated with ↓ 6-yr T2D Incidence

Diabetologia (2012) Diabetes Care (2014)

Carb Intake and De Novo Lipogenesis (DNL)

Adapted from ASBMB 2012

DNL Fatty Acid and Metabolic Syndrome - Baseline

16:1n-7 was Associated with 1 MetS Risk and Its Components

Am J Clin Nutr (2012)

DNL Fatty Acids and 6-yr Risks of Metabolic Disease - Cohort

↑ DNL fatty acids were associated with ↑ 6-yr incident MetS by 30-51%
 ↑ DNL fatty acids associated with ↑ 6-yr incident T2DM by 20-30%

•Model 1: adjusted for age, sex, region, and residence

•Model 2: Modle1+ physical activity, education attainment, current smoking and drinking, family history of chronic diseases, total energy intake, carb intake of total energy, and energy-adjusted dietary glycemic index and energy-adjusted glycemic index;

•Model 3: Modle2+ BMI

Am J Clin Nutr (2013)

Low Carb Intervention Reduced Erythrocyte 16:1n7

Design: A randomized, controlled and parallel trial Subjects: 50 volunteers (BMI ≥ 24 kg/m²) Duration: 12 weeks

- Low Carb Group Carb: 20-120 g/d
 High Carb + Calorie Group 35% calorie restricted Carb: 55%; protein: 19%; fat:26%
 Low carb
 Preparation
 Screening
 2011.4
 5
 6
 7
 Study duration
 - Both diets ↓ (~5 kg BW)
 - Low carb diet [↑] HDL-C
 - Low carb diet ↓ 16:1n7

Br J Nutr (2013) Unpublished data

Interaction of Variant in FADS1 and PUFA on Lipid Profile

1.2

Low 18:2n-6

High 18:2n-6 J Lipid Res (2013)

GWAS Meta of PUFA in Chinese and Europeans

Identified 2 Novel Loci (MYB and AGPAT4 for 22:4n-6) in Chinese

Identified 1 Independent Signal (rs2281591) at ELOVL2 for 22:5n-3 in Chinese

GWAS Meta of PUFA in Chinese and Europeans

Trans-Ethnic Meta

Identified 2 Additional Novel and Confirmed 5 Loci

PPT2-rs3134603 for 22:5n-3

Different Effect Sizes of FADS1 Variants on PUFA Levels between Chinese and Europeans

GWAS Meta of MUFA in Chinese and Europeans

MUFA Profiles in Chinese and Europeans

20:1n-9

1

J Lipid Res (2017)

GWAS Meta of MUFA in Chinese and Europeans

Trans-Ethnic Meta found 4 Novel Associations

J Lipid Res (2017)

GWAS Meta of MUFA in Chinese and Europeans

Trans-Ethnic Meta Confirmed 6 Reported Associations

J Lipid Res (2017)

Potential Functional SNP at GCKR

Potential mechanism of SNP at *PKD2L1*

PKD2L1-rs603424 might influence 16:1n-7 and 18:1n-7 levels by ↓ expression of SCD (∆9 desaturase)

J Lipid Res (2017)

Acylcarnitines and Fatty Acid Oxidation

- Acylcarnitines, the intermediates via transferring acyl moiety from CoA to L-carnitine
- They transport long-chain (LC) fatty acids to mitochondrial inner membrane
- Hypothesis: ↑ LC-acylcarnitines reflect mitochondria stress and incomplete βoxidation

Established Acylcarnitines Database

A total of 34 free and acylcarnitines were detected in 2,106 participants completed 6-yr follow-up

- Free carnitine and precursor
- Short-chain acylcarnitine
- Medium-chain acylcarnitine
- Long-chain acylcarnitine

Acylcarnitines [↑] Prediction of 6-yr Incident Diabetes

Model 1: conventional model including age, sex, region, residence, smoke, drink, physical activity, family history of diabetes, systolic blood pressure, BMI, glucose & HbA1c, AUC = 0.73;

Model 2: Model 1 + selected acylcarnitines, AUC = 0.90

Diabetes Care (2016)

Ionomics and Metabolic Diseases

A total of **33** elements were detected in our 6-yr Follow up samples by ICP-MS:

Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, Se, Sr, V, Zn, S, Mo, Pd, Re, Sb, Si, Sn, Ti and W

↑ Urinary Nickel Levels were Associated with ↑ T2D Risk

Adjustment including lifestyle factors, BMI, creatinine, C-reactive protein Int J Epidemiol (2014)

International Journal of Epidemiology, 2015, 248–250 Commentary: Environmental chemicals and diabetes: which ones are we missing?

doi: 10.1093/ije/dyv004

Chin-Chi Kuo^{1,2,3,4} and Ana Navas-Acien^{1,2,3}*

¹Department of Epidemiology, and ²Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA, ³Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, MD, USA and ⁴Kidney Institute and Division of Nephrology, Department of Internal Medicine, China Medical University Hospital and College of Medicine, Taichung, Taiwan

*Corresponding author: 615 N Wolfe Street, Room W7513D, Baltimore, MD 21205, E-mail: anavas@jhu.edu

©The Author 2015; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association

"With the publication of the study by Liu et al., nickel appears as a potential new chemical that was missing in our list of environmental chemicals that may be related to diabetes."

International Journal of Epidemelogy

What we have found so far?

Suggesting potential roles of omics-based biomarkers in determining nutritional status and predicting metabolic diseases

Outline

Background

Finding from our studies

- Observational studies
- Intervention trials
- Currently ongoing studies

Roles of Vitamin D on Health

Modifying Factors for Vitamin D Status

Genetic factors •GC

Few studies have systematically evaluated effect of genetic and non-genetic factors on vitamin D response

Vitamin D and Metabolic Disorders – Our data

A population-based study (n=3280, aged 50-70 yrs)

Plasma 25(OH)D Profile

■ <50 nmol/l ■ 50 ≤25(OH)D <75 nmol/l ■ ≥75 nmol/l

↓ 25(OH)D ↑ Insulin Resistance

↓ 25(OH)D ↑ Metabolic Syndrome

↓ 25(OH)D **^6yr** Muscle Mass Loss

25(OH)D (nmol/L) Diabetes Care (2009) , J Acad Nutr Diet (2014)

Vitamin D related Genetic Polymorphisms -Our data

Study Design for Vitamin D₃ Trials

Randomized Double-blind Placebo-controlled trials

Trial I: A Dose–Response Study with VitD₃

- A 5-arm randomized, placebo-controlled trial
- 20-45 yrs with 25(OH)D <50nmol/l</p>

A 3-day food record and information of sunlight exposure and supplement intake were collected every 4 wks

Trial I: Dose–Response

Serum 25(OH)D in all the doses (400-2000IU) of VitD₃ reached a plateau at about week 6

Trial I: Efficacy of VitD₃ Intervention

2000 IU/d VitD₃ for 16 weeks \downarrow 80% deficiency without major adverse reactions

Eur J Nutr (2015)

Trial II: Study Design

A double-blind randomized, controlled trial

- 20-40 yrs, 50% men
- 25(OH)D <50nmol/L</p>
- BMI: 18.5-28 kg/m²

Trial II: Changes of 25(OH)D Levels

Supplemented 2000IU/d VitD for 20 weeks:

- Net increase of 25(OH)D was 30.6±1.7nmol/L
- There were 25% participants with uncorrected deficiency

Vitamin D Bioavailability

"Vitamin D Paradox"? African Americans have a lower total serum 25(OH)D but superior bone health

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Vitamin D–Binding Protein and Vitamin D Status of Black Americans and White Americans <u>Community-dwelling black Americans</u>, as compared with whites, had low levels of total 25-hydroxyvitamin D and vitamin D–binding protein, resulting in similar <u>concentrations of estimated bioavailable 25-hydroxyvitamin D.</u> Racial differences in the prevalence of common genetic polymorphisms provide a likely explanation for this observation. (Funded by the National Institute on Aging and others.)

Total 25(OH)D: VDBP-bound (85-90%) + Albumin-bound (10-15%) + Free (< 1%) Bioavailable 25(OH)D (25[OH]D_{Bio})

Cross-sectional studies suggested that associations of 25(OH)D_{Bio} with serum calcium, PTH or BMD status were stronger than those associations of 25(OH)D

GC Polymorphisms and VDBP Isoforms

VDBP Measured by Mono- and Polyclonal ELISAs

- Monoclonal ELISA: 165.3±90.4µg/ml
- Polyclonal ELISA 418.7±99.0µg/ml (P < 0.001)

The polyclonal ELISA is a prefer method to assess VDBP and 25(OH)D_{Bio} for populations with relatively higher Gc1F/1F frequency like Blacks and Chinese

Vitamin D Metabolism Pathway

Trial II: Gene Variants and 25(OH)D Responses

GC-rs4588 A, CYP2R1-rs10741657 G and VDR-rs2228570 A alleles were associated with ↓ 25(OH)D responses

Trial II: GRS×Treatment Interaction and 25(OH)D Responses

- Genetic risk score (GRS) = rs4588-A + rs10741657-G + rs2228570-A
- GRS×Treatment interaction (P_{for interaction} = 0.04)

Trial II: BMI and 25(OH)D Responses

† BMI per unit $\rightarrow \downarrow 25(OH)D$ responses by 1.9nmol/L

Trial II: Effects of Genetic and Non-genetic Factors

Genetic factors showed stronger impacts than non-genetic factors on 25(OH)D and 25(OH)D_{Bio} responses

Trial II: Serum Calcium and 25(OH)D

Only change of 25(OH)D_{Bio} was positively associated with change of serum calcium

Trial II: 25(OH)D Threshold for PTH Suppression

Serum PTH level was maximally suppressed when 25(OH)D≥50.8 nmol/L

Summary

- Daily supplemented 2000 IU VitD₃ [↑] total and bioavailable
 25(OH)D levels, but still left uncorrected deficiency
- 25(OH)D_{Bio} might provide additional information reflecting vitamin

When waiting for more studies with bone and cardiovascular outcomes, it is important to take trans-ethnic and interpersonal variations of genetic and non-genetic factors into account for precise vitamin D recommendation and assessment

Outline

Background

- Finding from our studies
 - Observational studies
 - Intervention trials
- Currently ongoing studies

Measuring Fatty Acids (N= 10,000) from China Kadoorie Biobank Study (n=0.5 million, 10 locations)

Fatty acids and Metabolic Diseases

- Identify fatty acids that are closely associated with diseases.
- Genetic and environmental factors contributing to fatty acid levels.
- Lay foundation for disease prediction.

National Precision Medicine Project for Metabolic Disease

What We Could Do Together?

Better Nutrition and Better Health

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1-Specificity

Acknowledgements

Our group Dr. Huaixing Li Dr. Zhijie Yu Dr. Liang Sun Feijie Wang Yiwei Ma Yiqin Wang He Zheng Qianlu Jin

Former Students Dr. Xingwang Ye Dr. Lihua Chen Dr. An Pan Dr. Ying Wu Dr. Jing Wang Dr. Qibin Qi Dr. Ling Lu Dr. Hongyu Wu Dr. Chen Liu Dr. Danxia Yu **Dr. Geng Zhang** Dr. Gan Wei Dr. Geng Zhong Dr. Jingwen Zhu Dr. Xin Liu Dr. Gang Liu **Dr. Pang Yao** Dr. Yao Hu

Funding

Ministry of Science and Technology (863, 973 Projects) National Natural Science Foundation of China The Knowledge Innovation Program of the CAS Chief Scientist Award of Shanghai Institutes for Biological Sciences, CAS

<u>SIBS</u>

Dr. Jiarui Wu Dr. Yixue Li Dr. Rong Zeng Dr. Qin Zhang Dr. Yan Chen Dr. Yong Liu

GWAS

Collaborators Dr. Zhaoqian Liu Dr. Linong Ji Dr. Xuerao Han Dr. Ze Yang Dr. Tangchun Wu Dr. Liegang Liu Dr. Renming Hu Dr. Ying Liu Dr. Weiping Jia Dr. Xio-ou Shu China, Beijing and Shanghai CDCs Dr. Junshi Chen Dr. Wenhua Zhao Dr. Xinghuo Pang Dr. Zheng Zhang Dr. Shufang Jiao Dr. Hong Liu Dr. Shurong Zou

Unilever Cooperate Research Dr. Frans van der Ouderaa Dr. Oscar Franco Dr. Kirsten Rennie Novo Nordisk Co

Dr. Børge Diderichsen Dr. Jacob Sten Petersen Dr. Baoping Wang Dr. Xujia Zhang

Cornell University Dr. Jere D. Haas Dr. Edward A. Frongillo, Jr.

Harvard University

Dr. Frank B. Hu Dr. Qi Sun Dr. Lu Qi Dr. Yiqing Song Dr. Donna Spiegelman Dr. Meir J. Stampfer Dr. Walter C. Willett

Mount Sinai School of Medicine Dr. Ruth JF Loos

MRC Epidemiology Unit, Cambridge Dr. Nick Wareham

Huadong Hospital Dr. Xiafei Chen

Thanks!

Nickel and Type 2 Diabetes

- Source: alloy, electroplating, nickel-cadmium battery, burning coal, fuel oil and waste.
- Animal studies: induced hyperglycemia.
- Human population-based data : not available

