DNA ADDUCT MARKERS ASSOCIATED WITH THE GASTROINTESTINAL DIGESTION OF RED MEAT

L. Vanhaecke, C. Rombouts, T. Van Hecke, E. Vossen, S. De Smet & L.Y. Hemeryck
Estimated number of incidence cases, both sexes, worldwide (top 10 cancer sites) in 2012
Estimated age-standardized rates (global) of incidence, both sexes, colorectal cancer, worldwide in 2012.
COLORECTAL CANCER (CRC) RISK

<table>
<thead>
<tr>
<th>Factors that increase risk</th>
<th>Relative risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol consumption (heavy vs. nondrinkers)</td>
<td>1.6</td>
</tr>
<tr>
<td>Obesity</td>
<td>1.2</td>
</tr>
<tr>
<td>Red meat consumption</td>
<td>1.2</td>
</tr>
<tr>
<td>Processed meat consumption</td>
<td>1.2</td>
</tr>
<tr>
<td>Smoking (current vs. never)</td>
<td>1.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Factors that decrease risk</th>
<th>Relative risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical activity</td>
<td>0.7</td>
</tr>
<tr>
<td>Dairy consumption</td>
<td>0.8</td>
</tr>
<tr>
<td>Fruit consumption</td>
<td>0.9</td>
</tr>
<tr>
<td>Vegetable consumption</td>
<td>0.9</td>
</tr>
<tr>
<td>Total dietary fiber (10 g/day)</td>
<td>0.9</td>
</tr>
</tbody>
</table>
RED VS. WHITE MEAT: HEME HYPOTHESIS

Myoglobin containing heme
- Passage through gastrointestinal tract
- Non-absorbed fraction

→ Passage through ascending, transverse and descending colon: catalyzes a number of endogenous transformations
HEME IRON TOXICITY

Heme iron in the gut

Direct toxicity
- Cytotoxic
- ?

Indirect toxicity
- Stimulation of \(N\text{-nitroso compound (NOC)}\) formation
- ?
- Stimulation of (lipid per)oxidation (LPO)
- Genotoxic
- Cytotoxic & Genotoxic

Cancer initiation, promotion and progression
STUDY GOALS

1. Install a UHPLC-HRMS based DNA adductomics methodology
 → To facilitate targeted as well as untargeted DNA adduct analysis

2. Study differences in DNA adduct formation due to red vs. white meat digestion
 a. Effect of calcium (cancer-protective attributes)
 b. Effect of myoglobin (heme iron)
 c. Effect of lower vs. higher dietary fat content (Western diet)
UHPLC-HRMS DNA ADDUCTOMICS

- Accurate mass measurements
- **High specificity** ➔ identification with high certainty
- **High sensitivity** ➔ quantification of low levels

Optimisation:

Targeted & untargeted DNA adduct detection

Quadrupole-Orbitrap (Q-Exacte™)

Successful validation:

Hemeryck et al., 2015, *Analytica Chimica Acta*
RED VS. WHITE MEAT (1): IN VITRO DIGESTION MODEL

Vanden Bussche et al. 2014
Molecular Nutrition and Food Research
RED VS. WHITE MEAT (2): **IN VIVO** RAT MODEL

- **14-day feeding trial**

 ![Image](image.png)

 OR

 - Sampling of liver, small and large bowel tissue
 - Extraction of DNA and DNA adducts
 - DNA adduct analysis
CONDUCTED EXPERIMENTS & STUDIES

1. *In vitro* digestion of chicken, pork & beef
 - 15 fecal inocula
 - Limited to targeted DNA adduct analysis

2. *In vitro* digestion of chicken & beef
 - 5 fecal inocula
 - Targeted & untargeted DNA adduct analysis
 - Additionally: assessment of effect of calcium (CaCO$_3$) addition

3. *In vitro* digestion of chicken & beef
 - 10 fecal inocula
 - Targeted & untargeted DNA adduct analysis
 - Additionally: assessment of effect of myoglobin addition

4. *In vivo* digestion of chicken & beef
 - 14-day feeding trial
 - Sprague-Dawley rats
 - Targeted & untargeted DNA adduct analysis
 - Additionally: assessment of effect of lard content
1.1 *In vitro* digestion of beef using 5 different fecal inocula

→ DNA adduct formation?

1.2 Selection of 2 fecal inocula for further investigation:

Beef vs. Chicken & CaCO$_3$ supplementation

→ DNA adduct formation?
DNA adduct formation upon the *in vitro* digestion of beef using 5 different fecal inocula: P1-P5

Pre-colonic levels subtracted from post-colonic levels = representation of in- or decrease during colonic fermentation

Interindividual variation

Some DNA adduct types rise, whilst others decrease during colonic fermentation
DNA adduct formation upon the *in vitro* digestion of different meat types using 2 different fecal inocula: P1 & P2

Comparing:
- Beef vs. chicken
- Non-supplemented beef or chicken meat vs. beef or chicken supplemented with CaCO₃

In (pre- and) post-colonic digestion samples

⇒ Meat type strongly influences DNA adduct formation
DNA adductomics to study the genotoxic effects of red meat consumption with and without added animal fat in rats

Lieselot Y. Hemerycka, Thomas Van Heckeb, Els Vossenb, Stefaan De Smetb, Lynn Vanhaeckea,*

- \textit{In vivo} digestion of beef or chicken by Sprague-Dawley rats

- differences in DNA adduct levels in liver, duodenal and colonic tissue?

+ Investigation of the interfering role of dietary fat
DNA adduct formation in liver, duodenum & colon upon digestion of:

- a low fat beef diet (‘LFBe’), or
- a low fat chicken diet (‘LFCh’), or
- a high fat beef diet (‘HFBe’), or
- a high fat chicken diet (‘HFCh’)

- Prominent difference according to tissue type
- Difference according to diet
- 22 DNA adduct types increased due to beef and/or lard digestion
DNA ADDUCTS WITH RED MEAT MARKER POTENTIAL

<table>
<thead>
<tr>
<th>DNA adduct name</th>
<th>DNA adduct type</th>
<th>Context</th>
<th>Test</th>
<th>p-value or VIP score</th>
</tr>
</thead>
<tbody>
<tr>
<td>O⁶-Carboxymethyl-G</td>
<td>DNA alkylation</td>
<td>In vitro (x3)</td>
<td>ANOVA & t-test</td>
<td>p = 0.05, p < 0.01, p = 0.05</td>
</tr>
<tr>
<td>Dimethyl-T or ethyl-T</td>
<td>DNA alkylation</td>
<td>In vitro (x2)</td>
<td>Sieve™ pairwise comparison & Simca™ analysis</td>
<td>p = 0.02, VIP = 1.95</td>
</tr>
<tr>
<td>Methyl-G</td>
<td>DNA alkylation</td>
<td>In vitro (x2)</td>
<td>Simca™ analysis & t-test</td>
<td>VIP = 1.23, p = 0.03</td>
</tr>
<tr>
<td>Malondialdehyde-2x-G</td>
<td>Lipid peroxidation & attack of DNA</td>
<td>In vitro & in vivo</td>
<td>Sieve™ pairwise comparison & GENE-E marker selection</td>
<td>p = 0.05, p = 0.02</td>
</tr>
<tr>
<td>Heptenal-G</td>
<td>Lipid peroxidation & attack of DNA</td>
<td>In vitro & in vivo</td>
<td>t-test</td>
<td>p = 0.05, p = 0.03</td>
</tr>
<tr>
<td>Carbamoylhydroxyethyl-G</td>
<td>DNA alkylation</td>
<td>In vitro & in vivo</td>
<td>t-test</td>
<td>p = 0.03, p = 0.04</td>
</tr>
<tr>
<td>Malondialdehyde-3x-C</td>
<td>Lipid peroxidation & attack of DNA</td>
<td>In vitro (x2)</td>
<td>Sieve™ pairwise comparison & t-test</td>
<td>p < 0.01, p = 0.01</td>
</tr>
</tbody>
</table>
CONCLUSIONS: RELEVANT TO RED MEAT-CRC LINK?

Red meat/heme iron digestion

- Stimulation of N-nitroso compound (NOC) formation
 - Genotoxic
 - Methyl-G
 - O6-carboxymethyl-G
 - Dimethyl-T or ethyl-T
 - Carbamoylhydroxyethyl-G

- Stimulation of (lipid per)oxidation (LPO)
 - Cytotoxic & Genotoxic
 - DNA adduct formation
 - Heptenal-G
 - Malondialdehyde-2x-G
 - Malondialdehyde-3x-G

- ? Unknown ?

Cancer initiation, promotion and progression
Polar metabolomics – chemical targets

- Amino acids
- Amines
- Other N-compounds
- Polyols
- Bile acids
- Carbohydrates
- Short chain fatty acids
- Hydroxy acids
- Multicarboxyl acids
- Monocarboxyl acids
- ...

Lipidomics – chemical targets

- Fatty acyls
- Phospholipids
- Prenols
- Sterols
- Glycerolipids
- Glycerophospholipids
- Polyketides
- Sphingolipids
Discovery of 5 discriminating metabolites with potential involvement red meat related diseases

- 3-dehydroxycarnitine
- Dityrosine
- Kynurenine
- N’-formylkynurenine
- Kynurenic acid

PARALLEL RESEARCH: METABOLOMICS RED VS. WHITE MEAT
FUTURE RESEARCH: FUSED OMICS

METADATA
- Age
- Gender
- Dietary habits
...

FUSED OMICS platform
- Data processing
- Data integration
- Pathway analysis
- Biomarker discovery

METABOLOMICS
- Lipids
- Polar metabolites

METAGENOMICS
- Composition of the gut microbiome

DNA ADDUCTOMICS
- Chemically altered DNA nucleobases
Thank you!

Lynn Vanhaecke
Prof. Dr.

DEPARTMENT OF VETERINARY PUBLIC HEALTH AND FOOD SAFETY
- LAB OF CHEMICAL ANALYSIS

E lynn.vanhaecke@ugent.be
T +32 9 264 74 57
F +32 9 264 74 91

http://www.vvv.ugent.be

Ghent University
@ugent
Ghent University