FEBRUARY 9, 2017 1st NuGO ECN Online Webinar

AN INTRODUCTION TO METABONALYST

A web-based freely accessible tool for -omics data analysis and interpretation

Dr. Rosa Vázquez-Fresno Postdoctoral Researcher Dr. David Wishart Lab University of Alberta

MetaboAnalyst

http://www.metaboanalyst.ca

A comprehensive web server designed to process & analyze -omics data

Courtesy: Dr. David Wishart

MetaboAnalyst Modules

Statistical Analysis

This module offers various commonly used statistical and machine learning methods including t-tests, ANOVA, PCA, PLS-DA and Orthogonal PLS-DA. It also provides clustering and visualization tools to create dendrograms and heatmaps as well as to classify based on random forests and SVM.

Pathway Analysis

This module supports pathway analysis (integrating enrichment analysis and pathway topology analysis) and visualization for 21 model organisms, including Human, Mouse, Rat, Cow, Chicken, Zebrafish, Arabidopsis thaliana, Rice, Drosophila, Malaria, S. cerevisae, E.coli. and others, with a total of ~1600 metabolic pathways.

Power Analysis

This module uses pilot data to calculate the minimum number of samples required to detect a statistically significant difference between two populations with a given degree of confidence (called Power Analysis).

Integrated Pathway Analysis

This module performs integrated metabolic pathway analysis on results obtained from combined metabolomics and gene expression studies conducted under the same experimental conditions.

Enrichment Analysis

This module performs metabolite set enrichment analysis (MSEA) for human and mammalian species based on several libraries containing ~6300 groups of metabolite sets. Users can upload either 1) a list of compounds, 2) a list of compounds with concentrations, or 3) a concentration table.

Time-series/Two-factor Design

This module supports temporal and two-factor data analysis including data overview, two-way ANOVA, and empirical Bayes time-series analysis for detecting distinctive temporal profiles. It also supports ANOVAsimultaneous component analysis (ASCA) to identify major patterns associated with each experimental factor.

Biomarker Analysis

This module performs various ROC curve based biomarker analyses for a single or multiple biomarkers. It also allows users to manually specify biomarker models as well as new sample prediction.

Other Utilities

This module contains several common utility functions. At this moment, compound ID conversion, batch effect correction and lipidomics data analysis are available.

-Omics analysis

Purpose: to convert various raw data forms into data matrices suitable for statistical analysis

Supported data formats Concentration tables (Targeted Analysis) Peak lists (Untargeted) Spectral bins (Untargeted) Raw spectra (Untargeted)

Data Formats

the state of the	- a comprehensive tool suite for metabolomic data analysis
al cala i di a li i	
Home	Welcome <u>>> click here to start <<</u>
Overview	News & Updates
Data Formats	 Fixed the bug in feature table display in Biomarker Tester module (01/05/2017); NON
Conta I Cittado	 Updated the pathway result table to show all/matched compounds (11/25/2016); NOV
EAQs	Enhanced Normalization and Data Editor for better user experience (11/15/2016); HEW
Tutoriale	 Added support for sparse PLS-DA (sPLS-DA) analysis (10/28/2016); NEW
Tutorials	 Added support for quantile normalization (08/29/2016);
Troubleshooting	 Improved name mapping functions for common metabolite names (08/18/2016);
	 More than <u>1 million jobs</u> have been processed since 06/2015 (06/21/2016); NEW
Resources	 Updated Time Series module to support analysis of time-series only data (06/08/2016);
Update History	 Added support for Orthogonal PLS-DA (05/16/2016);
opulate matory	 Improved support for dealing with special characters and punctuations (05/11/2016);
User Stats	 Minor feature updates and bug fixes based on user feedback (04/28/2016);
	 Added support for batch effect correction for multiple data sets (Other Utilities module) (02/22/2016);

Example Datasets

	MetaboAnalyst 3.0 – a comprehensive tool suite for metabolomic data analysis				
Home	Data Formats:				
<u>Overview</u>	Example datasets for downloading, including :				
Data Formats	Compound concentration data - cow, four groups (download)				
<u>FAQs</u>	Compound concentration data - human, two groups (<u>download</u>) Binned NMR/MS spectra data (<u>download</u>)				
Tutorials	Processed peak intensity table (<u>download</u>) Time-series peak intensity data (<u>download</u>)				
Troubleshooting	Zipped files (.zip) format datasets, including :				
Resources	NMR peak lists (2 columns - chemical shift and intensity) (<u>download</u>)				
Update History	 MS peak lists (2 columns - mass and intensity) (<u>download</u>) MS peak lists (3 columns - mass, retention time, and intensity) 				
User Stats	(download)				
	 LC/GC - MS spectra (NetCDF, mzDATA, or mzXML) (<u>download</u>) 				
<u>About</u>	Note: please refer to detailed instructions and screenshots listed below.				
	General Introduction One-factor / Paired Time-series / Two-factor Peak lists / Spectra Biomarker data				
	Comma Separated Values (.csv) or Tab Delimited Text (.txt):				
McGill	These two formats are used for <u>concentration data, peak intensity table</u> , and <u>MS/NMR spectral bins</u> . Samples can be in either rows or columns. Note,				
	1. Both sample or feature names must be unique and consist of a combination of common English letters, underscores and				
тміс	numbers for naming purpose. Latin/Greek letters are not supported 2. The class labels must follow immediately after the sample names; for two-factor and time series data, there must be two class labels corresponding to the two factors; 3. For time-series data, the time-noint group must be named as Time . In addition, the samples collected from the same				
	 For time-series data, the time-point group must be named as Time. In addition, the samples collected from the same subjects at different time points should be consecutive (See the screenshots demo for "Two-factor / Time series") Data values (concentrations, bins, peak intensities) should contain only numeric and positive values (<u>using empty or NA for missing values</u>). 				

Data Formats

 COMMA SEPARATED VALUES!! (.csv) or TAB DELIMITED TEXT (.txt) → For <u>quantitative</u> (concentration tables) or <u>qualitative</u> (peak intensity or NMR/MS spectral bins).

Things to considere:

- Both samples and feature names MUST be UNIQUE. Can be combination fo letters and numbers separated by underscores [_].
- The class label must follow immediately after the sample name (for twofactors and time series data must be two class label columns)
- Metaboanalyst can also support .Zip files.

Produced from either NMR, LC-MS, or GC-MS. In addition, GC/LC-MS spectra saved as open data format (NetCDF, mzDATA, mzXML) can also be processed using the XCMS packages

Let's start!

Select a Module : Statistical Analysis

Home

FAQs

Contact

About

Please choose a functional module to proceed: Overview Statistical Analysis Enrichment Analysis Data Formats This module offers various commonly used statistical This module performs metabolite set enrichment and machine learning methods including t-tests, analysis (MSEA) for human and mammalian species ANOVA, PCA and PLS-DA. It also provides clustering based on several libraries containing ~6300 groups of Tutorials and visualization tools to create dendrograms and metabolite sets. Users can upload either 1) a list of heatmaps as well as to classify based on random compounds, 2) a list of compounds with Resources forests and SVM. concentrations, or 3) a concentration table. Update History User Stats Pathway Analysis Time Series Analysis This module supports pathway analysis (integrating This module supports temporal and two-factor data enrichment analysis and pathway topology analysis) analysis including data overview, two-way ANOVA, and visualization for 21 model organisms, including and empirical Bayes time-series analysis for detecting Human, Mouse, Rat, Cow, Chicken, Zebrafish, distinctive temporal profiles. It also supports ANOVA-Arabidopsis thaliana, Rice, Drosophila, Malaria, S. simultaneous component analysis (ASCA) to identify TMIC cerevisae, E.coli. and others, with a total of ~1600 major patterns associated with each experimental factor. metabolic pathways. Power Analysis Biomarker Analysis This module uses pilot data to calculate the minimum This module performs various ROC curve based number of samples required to detect a statistically biomarker analyses for a single or multiple signficant difference between two populations with a biomarkers. It also allows users to manually specify given degree of confidence (called Power Analysis). biomarker models as well as new sample prediction.

Data Upload

ssing	Tab-delimited t	text (.txt) or comma-separated values (.csv) file:	_
alization	Data Type:	Concentrations Opectral bins Peak intensity table	
lics	Format:	Samples in rows (unpaired)	Submit
	Data File:	Choose File cow_diet.csv	
	Zipped Files (tip) :	
	Data Type:	NMR peak list MS peak list MS spectra	
			Submit
	Data File:	Choose File No file chosen	

Data Integrity Check

Data Integrity Check:

T.	Checking the class labels - at least three replicates are required in each class.	
2.	If the samples are paired, the pair labels must conform to the specified format.	

3. The data (except class labels) must not contain non-numeric values.

The presence of missing values or features with constant values (i.e. all zeros)

Data processing information: Checking data content ... passed Samples are in rows and features in columns The uploaded file is in comma separated values (.csv) format. The uploaded data file contains 39 (samples) by 47 (compounds) data matrix. 4 groups were detected in samples. Samples are not paired. All data values are numeric. A total of 0 (0%) missing values were detected. By default, these values will be replaced by a small value. Click Skip button if you accept the default practice Or click Missing value imputation to use other methods Missing value estimation Skip

How to deal with missing values?

- Missing values should be presented either as <u>empty values or NA</u>
 <u>without quotes</u> in order to be accepted by MetaboAnalyst
- MetaboAnalyst offers a variety of methods to deal with missing values. By default, the missing values are treated **as the result of low signal intensity**. <u>They will be replaced by half of the minimum positive values</u> <u>detected in your data</u>. Users can also specify other methods, such as *replace by mean/median*, *Probabilistic PCA (PPCA), Bayesian PCA (BPCA) method, or Singular Value Decomposition (SVD) method* to impute the missing values (<u>Stacklies W. et al</u>).

Data Integrity Check

The normalization procedures are grouped into three categories.

The sample normalization allows general-purpose adjustment for differences among your sample

Data transformation and scaling are two different approaches to make individual features more comparable.

You can use one or combine them

Sample normalization		
None		
Sample-specific normalization (i.e. weight, voluments)	ne) <u>Click here to specify</u>	
Normalization by sum		
Normalization by median		
Normalization by a specific reference sample	7	
Normalization by a pooled sample from group	C	
Normalization by reference feature	p-Hydroxyphenylacetic acid	•
Quantile normalization		
Data transformation		
None		
OLog transformation (generalized logarithm t	ransformation or glog)	
Cube root transformation (take cube root of data v	alues)	
Data scaling		
None		
Mean centering (mean-centered only)		
Auto scaling (mean-centered and divided by th	e standard deviation of each variable)	
Pareto scaling (mean-centered and divided by th	e square root of standard deviation of e	ach <mark>variabl</mark> e)
Range scaling (mean-centered and divided by th	e range of each variable)	

Sample normalization	
Sample-specific normalization (i.e. weight, volume) <u>Click here to specify</u> Normalization by sum Normalization by median	integrated area
Normalization by a specific reference sample 7 Normalization by a pooled sample from group C	=probabilistic quotient norm
Normalization by reference feature p-Hydroxyphenylacetic acid Quantile normalization P-Hydroxyphenylacetic acid	by a particular compound
Data transformation None Log transformation (generalized logarithm transformation or glog)	To remove unwanted technical variation
Cube root transformation (take cube root of data values) Data scaling	Account for different dilution effects of biofluids, drifts, instrument/injection
None Mean centering (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each varies)	Aims to make each sample comparable to each other (i.e. urine samples with differen dilution effects)
Pareto scaling (mean-centered and divided by the square root of standard deviati Range scaling (mean-centered and divided by the range of each variable)	on of each variable)

Sample normalization None Sample-specific normalization (i.e. weight, volume) <u>Click here to specify</u> Normalization by sum Normalization by median Normalization by a specific reference sample Normalization by a pooled sample from group	
Normalization by reference feature	o achieve a Normal ibution of your data
None Cube root transformation (generalized logarithm transformation or glog) Cube root transformation (take cube root of data values) distribution shape	ith a major effect on
Data scaling None Mean centering (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the square root of standard deviation of each variable) Range scaling (mean-centered and divided by the range of each variable)	Fairly strong transformation. Weaker than the logarithm x to $x^{(1/3)}$ ¹⁸

Sample normalization			
None			
Sample-specific normalization (i.e. weight, volume)			
Normalization by sum			
Normalization by median			
Normalization by a specific reference sample	7		
Normalization by a pooled sample from group	c •		
Normalization by reference feature	p-Hydroxyphenylacetic acid	Transform your f	acturaç in a cama
Quantile normalization		Transform your for scale for suitable c	omparison of vour
Data transformation		variables	
None		This procedure is usef	ul when variables are
Log transformation (generalized logarithm tran	sformation or glog)	This procedure is useful when variables	
Cube root transformation (take cube root of data valu	es)	of very different or	ders of magnitude
Data scaling			
None			
Mean centering (mean-centered only)			
Auto scaling (mean-centered and divided by the st	tandard deviation of each	variable)	
and the second			
Pareto scaling (mean-centered and divided by the second	quare root of standard dev	iation of each variable)	

Scaling

Method	Formula	Goal	Advantages	Disadvantages
Autoscaling	$\tilde{X}_{ij} = \frac{X_{ij} - \overline{X}_i}{S_i}$	Compare metabolites based on correlations	All metabolites become equally important	Inflation of the measurement errors
Range scaling	$\tilde{X}_{ij} = \frac{X_{ij} - \overline{X}_i}{\left(X_{i_{\max}} - X_{i_{\min}}\right)}$	Compare metabolites relative to the biological response range	All metabolites become equally important. Scaling is related to biology	Inflation of the measurement errors and sensitive to outliers
Pareto scaling	$\tilde{x}_{ij} = \frac{x_{ij} - \bar{x}_i}{\sqrt{s_i}}$	Reduce the relative importance of large values, but keep data structure partially intact	Stays closer to the original measurement than autoscaling	Sensitive to large fold changes

Data Normalization

Normalization overview:

The normalization procedures are grouped into three categories. The sample normalization allows general-purpose adjustment for differences among your sample; data transformation and scaling are two different approaches to make individual features more comparable. You can use one or combine them to achieve better results.

Sample normalization					
None					
Sample-specific normalization (i.e. weight, volume	Click here to specify				
Normalization by sum					
Normalization by median					
ONormalization by a specific reference sample	7				
Normalization by a pooled sample from group	CLV				
Normalization by reference feature	p-Hydroxyphenylacetic acid				
Quantile normalization					
Data transformation					
None					
OLog transformation (generalized logarithm tra	nsformation or glog)				
Cube root transformation (take cube root of data values)					
Data scaling					
None					
Mean centering (mean-centered only)					
Auto scaling (mean-centered and divided by the standard deviation of each variable)					
Pareto scaling (mean-centered and divided by the square root of standard reviation of each variable)					
Range scaling (mean-centered and divided by the	range of each variable)				
	Ľ				
Normalize	ew Result Proceed				

Normalization Result

You cannot know a priori what the best normalization protocol will be.

MetaboAnalyst allows you to interactively explore different normalization protocols and to visually inspect the degree of "normality" or Gaussian distribution

Next Steps

After normalization has been completed it is a good idea to look at your data a little further to identify outliers or noise that could/should be removed

Data QC, Outlier Removal & Data Reduction

- Data filtering (remove solvent peaks, noise filtering, false positives, *outlier removal -- needs justification*)
- Dimensional reduction or feature selection to reduce number of features or factors to consider (PCA or PLS-DA)
- Clustering to find similarity

What is a natural grouping among these objects?

Quality Control

- Dealing with outliers
 - Detected mainly by visual inspection
 - May be corrected by normalization
 - May be excluded
- Noise reduction
 - More of a concern for spectral bins/ peak lists
 - Usually improves downstream results

Visual Inspection

• What does an outlier look like?

Finding outliers via PCA Finding outliers via Heatmap

How to detect and deal with outlier?

- To deal with outliers, the first is to check if those samples / features are measured properly. In many cases, outliers are the result of operational errors during analytical process. If those values cannot be corrected, they should be removed from analysis, but ALWAYS justified.
- MetaboAnalyst provides **DataEditor** to enable easy removal of sample/feature outliers. Please note, you may need to renormalize the data after outlier removal.

Outlier Removal (Data Editor)

Data Editor

#

Upload

Processing

Pre-process

Data check ssing valu

Data filter Data edite

rmalizatio

Download Exit

You can use the panels below to exclude particular sample or feature outliers, as well as to exclude or re-order groups. Note, you must click the Submit button to complete data editing. Data need to be re-caliberated after this step. you will be redirected to the Data normalization page when you click the Submit button.

Noise Reduction (Data Filtering)

Data Filtering:

The purpose of the data filtering is to identify and remove variables th information are used in the filtering process, so the result can be used untargeted metabolomics datasets (i.e. spectral binning data, peak lis Filtering can usually improve the results. For details, please refer to tl

Non-informative variables can be characterized in two groups: variable variables can be detected using mean or median; variables that are n or homeostasis) - these variables can be detected using standard dev Characteristics of noise & uninformative features

- Low intensities
- Low variances (default)

relative standard deviation(RSD = SD/mean) is another useful variance measure independent of the mean. The following empirical rules are applied during data filtering:

- Less than 250 variables: 5% will be filtered;
- Between 250 500 variables: 10% will be filtered;
- Between 500 1000 variables: 25% will be filtered;
- Over 1000 variables: 40% will be filtered;

Please note, in order to reduce the computational burden to the server, the **None** of choose None, the IQR filter will still be applied. In addition, the maximum at after filtering, only the top 5000 will be used in the subsequent analysis.

- Interquantile range (IQR)
- Standard deviation (SD)
- Median absolute deviation (MAD)
- Relative standard deviation (RSD = SD/mean)
- Non-parametric relative standard deviation (MAD/median)
- Mean intensity value
- Median intensity value
- None (less than 2000 features)

This step is strongly recommended for untargeted metabolomics datasets (i.e. spectral binning data, peak lists) with large number of variables, many of them are from baseline noises.

Process

Data Reduction and statistical analysis

Common Tasks

- To identify important features
- To detect interesting patterns
- To assess difference between the phenotypes
- To facilitate classification or prediction
- There several statistical analysis that you can perform in Metaboanalyst. However, not all can be covered here-We will look at ANOVA, Multivariate Analysis (PCA, PLS-DA) and Clustering

Select an analysis path to explore :

Univariate Analysis

Fold Change Analysis T-tests Volcano plot

One-way Analysis of Variance (ANOVA)

Correlation Analysis Pattern Searching

Chemometrics Analysis

Principal Component Analysis (PCA)

Partial Least Squares - Discriminant Analysis (PLS-DA)

Sparse Partial Least Squares - Discriminant Analysis (sPLS-DA)

Orthogonal Partial Least Squares - Discriminant Analysis (orthoPLS-DA)

Feature Identification

Significance Analysis of Microarray (and Metabolites) (SAM)

Empirical Bayesian Analysis of Microarray (and Metabolites) (EBAM)

Cluster Analysis

Hierarchical Clustering: Dendrogram Heatmaps

Partitional Clustering: K-means Self Organizing Map (SOM)

Classification & Feature Selection

Random Forest

Support Vector Machine (SVM)

ANOVA

One-way ANOVA & post-hoc Tests

What's Next?

- Click and compare different compounds to see which ones are most different or most similar between the groups
- Click on the Correlation link (under the ANOVA link) to generate a heat map that displays the pairwise compound correlations and compound clusters

Univariate Analysis

Fold Change Analysis T-tests Volcano plot

One-way Analysis of Variance (ANOVA)

Correlation Analysis Pattern Searching

Chemometrics Analysis

Principal Component Analysis (PCA)

Partial Least Squares - Discriminant Analysis (PLS-DA)

Sparse Partial Least Squares - Discriminant Analysis (sPLS-DA)

Orthogonal Partial Least Squares - Discriminant Analysis (orthoPLS-DA)

Feature Identification

Significance Analysis of Microarray (and Metabolites) (SAM)

Empirical Bayesian Analysis of Microarray (and Metabolites) (EBAM)

Cluster Analysis

Hierarchical Clustering: Dendrogram Heatmaps

Partitional Clustering: K-means Self Organizing Map (SOM)

Classification & Feature Selection

Random Forest

Support Vector Machine (SVM)
Overall Correlation Pattern

What's Next?

- When looking at >2 groups it is often useful to look for patterns or trends within particular metabolites
- Use Pattern Hunter to find these trends

Pattern Searching

- Looking for compounds showing interesting patterns of change
- Essentially a method to look for linear trends or periodic trends in the data

#	Correlation analysis can be performed either against a given feature or against a given pattern. The pattern is specified as a series of numbers separated by "-". Each number corresponds to the expected expression pattern in the corresponding group. For example, a 1-2-3-4 pattern is used to
Upload	search for features that increase linearly with time in a time-series data with four time points (or four groups). The order of the groups is given as the first
Processing Normalization	item in the predefined patterns.
Statistics	a feature of interest: 1,3-D
Fold change	Define a pattern using:
T-test Volcano plot	Submit
ANOVA	a custom profile:
Correlations	Choose a distance measure: Pearson r
PatternHunter	

Pattern Matching (cont.)

Select an analysis path to explore :

Univariate Analysis

Fold Change Analysis T-tests Volcano plot

One-way Analysis of Variance (ANOVA)

Correlation Analysis Pattern Searching

Chemometrics Analysis

Principal Component Analysis (PCA)

Partial Least Squares - Discriminant Analysis (PLS-DA)

Sparse Partial Least Squares - Discriminant Analysis (sPLS-DA)

Orthogonal Partial Least Squares - Discriminant Analysis (orthoPLS-DA)

Feature Identification

Significance Analysis of Microarray (and Metabolites) (SAM)

Empirical Bayesian Analysis of Microarray (and Metabolites) (EBAM)

Cluster Analysis

Hierarchical Clustering: Dendrogram Heatmaps

Partitional Clustering: K-means Self Organizing Map (SOM)

Classification & Feature Selection

Random Forest

Support Vector Machine (SVM)

Multivariate Analysis

- Use PLS-DA option to view the separation of the (labeled) groups
- PLS-DA "rotates" the PCA axes to maximize separation
- Look at the 2D PLS Scores Plot
- Look at the Q² and R² (Cross Validation) values
- Use the VIP plot to ID important metabolites

PLS-DA Score Plot

Processing

Fold chang T-test

ANOVA

PCA

PLSD

sPL8DA

SAM

EBAM

Dendrogram

Heatmap 80M

K-means

8VM

Download

Exit

Correlations

- Use PLS-DA option to ٠ view the separation of the (labeled) groups
- PLS-DA "rotates" the • PCA axes to maximize separation
- Look at the 2D PLS • **Scores Plot**
- Look at the O^2 and R^2 • (Cross Validation) values
- Use the VIP plot to ID • important metabolites

Evaluation of PLS-DA Model

- PLS-DA Model evaluated by cross validation of Q² and R²
- Using too many components can over-fit
- 3 component model seems to be a good compromise here
- Better R² and Q² as closer to 1

verview	2D Scores Plot	3D Scores Plot	Loadings Plot	Cross Validation	Imp. Features	Permutation
elect op	timal number of	components fo	or classification			
Maximu	m components to s	earch:	5 🔻			
Cross v	alidation (CV) meth	od:	10-fold CV	Update		
Perform	ance measure:	[Q2 🔻			
						3
	3	÷٦			Accuracy	
	9	≈ -			3 R2 9 Q2	
	Performance	9				
	Perfo	4-				
	2	8] 				
		1	2 3	4 5		
			Number of compone	ents		

Model Validation

Select an analysis path to explore :

Univariate Analysis

Fold Change Analysis T-tests Volcano plot

One-way Analysis of Variance (ANOVA)

Correlation Analysis Pattern Searching

Multivariate Analysis

Principal Component Analysis (PCA)

Partial Least Squares - Discriminant Analysis (PLS-DA)

Significant Feature Identification

Significance Analysis of Microarray (and Metabolites) (SAM)

Empirical Bayesian Analysis of Microarray (and Metabolites) (EBAM)

Cluster Analysis

Hierarchical Clustering: Dendrogram Heatmaps

Partitional Clustering: K-means Self Organizing Map (SOM)

Classification & Feature Selection

Random Forest

Support Vector Machine (SVM)

Heatmap Visualization

Heatmap Visualization (cont.)

What's Next?

- Most of the multivariate analysis is now done
- MetaboAnalyst has been keeping track of the plots or graphs you have generated
- Now its time to generate a printed report that summarizes what you've done and what you've found

Download Results

Result Download

The "Download.zip" contains all the files in your home directory. These data will remain in the server for 72 hours before being deleted automatically.

Download.zip	pca_loading_0_dpi72.png	
Analysis_Report.pdf	data_processed.csv	
nearmap 5 upr/2.png	plsda_coef.csv	
pca_loadings.csv	pls_score2d_0_dpi72.png	
heatmap 0 dpi72.png	pca_biplot_0_dpi72.png	
3-PP_dpi72.png	plsda_score.csv	
data original.csv	pca_score.csv	
pls_imp_0_dpi72.png	heatmap_1_dpi72.png	
heatmap 4 dpi72.png	pca_score2d_0_dpi72.png	
correlation_pattern.csv	pls_perm_1_dpi72.png	
pls_cv_0_dpi72.png	norm_0_dpi72.png	
Rhistory.R	ptn_1_dpi72.png	
pca pair 0 dpi72.png	plsda_vip.csv	
pls_loading_0_dpi72.png	heatmap_2_dpi72.png	
pca scree 0 dpi72.png	Isobutyrate_dpi72.png	
data_normalized.csv	heatmap_5_dpi72.png	
plsda_loadings.csv	pls_pair_0_dpi72.png	
	Logout	

Analysis Report

2.2 Correlation Analysis

Correlation analysis can be used to identify which features are correlated with a feature of interest. Correlation analysis can also be used to identify if certain features show particular patterns under different conditions. Users first need to define a pattern in the form of a series of hyphenated numbers. For example, in a time-series study with four time points, a pattern of of 1-2-3-4 is used to search compounds with increasing the concentration as time changes; while a pattern of 3-2-1-3 can be used to search compounds that decrease at first, then bounce back to the original level.

Figure 3 shows the important features identified by correlation analysis. Table 3 shows the details of these features.

Table 3: Important features identified by Pattern search using correlation analysis

	Compounds	correlation	t-stat	p-value	FDR
1	Butyrate	-0.81282	18932	3.4067e-08	0.00080058
234	Isobutyrate	-0.89788	15784	5.9015e-05	0.00092458
3	3-PP	-0.87238	15535	0.00014063	0.0016824
4	Acetate	-0.55453	18389	0.00024911	0.0023416
8	3-HB	-0.41943	14024	0.007582	0.041067
6	Isovalerate	-0.39861	13818	0.011986	0.056193
7	Lysine	-0.24401	12291	0.13439	0.30381
8	Methanol	-0.94287	12277	0.13878	0.30381
9	Ferulate	-0.22929	12145	0.16028	0.32783
10	Fumarate	-0.21966	12050	0.17906	0.33395
11	Histidine	-0.2169	12023	0.18474	0.33395
12	Propionate	-0.21018	11956	0.19912	0.34661
13	Maltone	-0.2003	11859	0.22148	0.37177
14	Acetoacetate	-0.17772	11638	0.27907	0.39746
15	Choline	-0.11886	11054	0.47111	0.65124
16	Tyrosine	-0.10857	10953	0.51847	0.67689
17	PAG	-0.079758	10668	0.62921	0.79927
18	S-HP	0.074918	10620	0.65035	0.80438
19	Formate	0.051347	10387	0.75823	0.84626
20	Aspartate	-0.031981	10198	0.84674	0.86515
21	Caffeine	0.011841	9763	0.94297	0.94297
22	Ribose	0.038943	9495.1	0.81357	0.85004
23	1.3-D	0.043155	9453.6	0.79419	0.84834
24	Succinate	0.04504	9435	0.78542	0.84834
25	Glacose	0.057544	9311.5	0.72787	0.83439
26	Cadavarine	0.060643	9280.8	0.71352	0.83439
27	Phenylacetate	0.063742	9250.2	0.69956	0.83439
28	Hypotanthine	0.10911	8502	0.50847	0.67659
29	Ethanol	0.18304	8071.6	0.26471	0.3888
30	NDMA	0.18492	8065	0.25975	0.3888
31	Proline	0.18713	8031.2	0.25399	0.3888
32	Glutamate	0.19334	7969.8	0.23929	0.38819
33	Benzoate	0.21978	7708.6	0.17884	0.33395
34	Valerate	0.23936	7515.1	0.14221	0.30381
35			7213.3		
	Glycarol	0.26991		0.096569	0.23888
36 37	Glycine	0.28064 0.28612	7107.3 7063	0.053533	0.21812
37	Nicotinate	0.25512		0.078511	0.21708
	Methylamine		7024.2	0.07431	0.21708
39	Isoleucine	0.30355	6581	0.060303	0.18895
40 41	Xanthine	0.30554	6561.3	0.058555	0.18895
	Dinethylamine	0.33298	6590.1	0.038326	0.13856
42	Lencine	0.38142	6407.9	0.029284	0.11068
43	Valine	0.3509	6116.7	0.016744	0.071841
44	Lactate	0.42384	8692.8	0.0071709	0.041057
45	Uracil	0.45172	5417	0.0035928	0.026137
46	Endotorin	0.80141	4926.1	0.0011471	0.0089853
47	Alanine	0.62026	3751.8	2.8337e-08	0.00080058

2.3 Hierarchical Clustering

In (aggiomerative) hierarchical cluster analysis, each sample begins as a separate cluster and the algorithm proceeds to combine them until all anangies belong to one cluster. Two parameters needs to be considered when performing hierarchical clustering. The first one is similarity measure - Eaclidean distance, Pearson's correlation, Spearman's rank correlation. The other parameters is clustering algorithms, including average linkage (clustering uses the centrolis of the observations), complete linkage (clustering uses the farthest pair of observations between the two groups), single linkage (clustering uses the clusters). Heatmap is of observations) and Ward's linkage (clustering uses and addition to the dendrogram.

Hierachical clustering is performed with the hclust function in package stat. Figure 15 shows the clustering result in the form of a dendrogram. Figure 16 shows the clustering result in the form of a heatmap.

Metabolite enrichment analysis

Pathway analysis

Biomarker Analysis

Select a Module (Enrichment Analysis)

Please choose a functional module to proceed: Home Overview Statistical Analysis Enrichment Analysis Data Formats This module offers various commonly used statistical This module performs metabolite set enrichment FAQs and machine learning methods including t-tests, analysis (MSEA) for human and mammalian species ANOVA, PCA and PLS-DA. It also provides clustering based on several libraries containing ~6300 groups of Tutorials and visualization tools to create dendrograms and metabolite sets. Users can upload either 1) a list of heatmaps as well as to classify based on random compounds, 2) a list of compounds with Resources forests and SVM. concentrations, or 3) a concentration table. Update History User Stats Pathway Analysis Time Series Analysis Contact This module supports pathway analysis (integrating This module supports temporal and two-factor data enrichment analysis and pathway topology analysis) analysis including data overview, two-way ANOVA, About and visualization for 21 model organisms, including and empirical Bayes time-series analysis for detecting Human, Mouse, Rat, Cow, Chicken, Zebrafish, distinctive temporal profiles. It also supports ANOVA-Arabidopsis thaliana, Rice, Drosophila, Malaria, S. simultaneous component analysis (ASCA) to identify TMIC cerevisae, E.coli. and others, with a total of ~1600 major patterns associated with each experimental factor. metabolic pathways. Power Analysis Biomarker Analysis This module uses pilot data to calculate the minimum This module performs various ROC curve based number of samples required to detect a statistically biomarker analyses for a single or multiple signficant difference between two populations with a biomarkers. It also allows users to manually specify given degree of confidence (called Power Analysis). biomarker models as well as new sample prediction.

Metabolite Set Enrichment Analysis (MSEA)

000	1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 -		http://ww	ww.msea.ca/M	SEA/face	Home.	sp								
	+ Chttp://www.msea.ca/MSEA/face peline GenePattern DAVID 2008ay Ani		tment o . eli	Biology Loois	Demar	of Albert	a Audiobai	a Mosie Car		Qr Go		Coilgun #1	ics 2	20	
is an exception of any bit	CONTRACTOR DAVID 2008 BY AS	and the second	and the self	mology roga	- Orgal	w restri	- Anniopal	in annun Sea	erentio	man I	- u or A	Congan Els		0	
		Metabo	lite Se	t Enrich	ment	Anal	veis (N	ISEA)							
				ningful pati					mic data						
	MSEA														
	Overview				1	East	chment A	nelusia							
	MSEA is a web-based tool to hel	o Montifu and	internal call	units of	1										
	metabolite concentration changes	s in a biologic				L.	Over Repres	entation An	alysis (ORA)	-					
	human and mammalian metabo				1	I	Single Samp	le Profiling	(SSP)						
	MSEA provides three types of en	richment ana	lyses:			1	Quantitative	Enrichment	Analysis (QI	(A)					
	 ORA performs over representation metabolities; 	entation analy	vais for <u>a list</u>	Lot											
	 SSP performs single samp 	ple profiling or	a biofluid s	ample by first		Othe	r Tasks								
	comparing the measured o ranges reported in literature				1	Ĩ	Compound II	D Conversio	n.						
	interesting patterns;				1	1	Browse Meta	abolite Set i	braries						
	 QEA performs quantitative compound concentration to 					1									
	class) or continuous pheno	otype labels.		niney, man	1	Docs	mentation								
	The analyses are based on five b	uilt-in metabo	lite set librar	ries containing			4SEA Work	flow							
	over 1,000 biologically meaningfu users can upload their self-defin	aroups of m	etabolites. Ir	addition.	1				D M	SEA-E	igurea	+if		111	
	species) for enrichment analysis	000					~			504-1	-				
	MSEA enables simultaneous bir	-at	3	(5		R.		÷		Q				
	interpretation. The approach has coordinated changes among a p.	Drawer	Rotate	Left Rotate	Right	Actu	al Size	Zoom To	Fit Zoom	In Zo	oom Ou	t			
	undetected with conventional m	A round	Concentratio	n Reference Conce	enciterate				Comparie	on Detail	Include	в		41.20	
		L-Indexine	0.34	1 579-(8 709 - 2 56	(), 0 (04 (0 27 -)	81): 375 (1-1	15:0(15-45:1)	(0.0 - 2.0)	м	Ŧ	с		Study 1 Study 2		
		Funaric acid	6.47	10.4 (3.8 - 53.7), 0	(0.1-1.7),10	- 25, 0 36 (0 0)	- 1.801.0.0 (0.1 - 1	73 107 (0.1 - 28	D N	Ŧ	г		Diady 3 Study 4		
	INGENUITY	Acetone	0.50	42 (0.98 - 15.3); 01						Ŧ			Dudy 5 Dudy 6		
		Succinic acid	8.4	14.4 (2.5 - 10.2), 31 (27 - 41), 197 2 (29				80100160-15		Ŧ			Study 7 Study 8	-	
										-			B Dudy 9 Study 10	<u></u>	
		1-Methythistide		2.0 (0 - 7.4); 33.8 () 7.3); 46.1 (3 - 90.8)					M	7			Study 11 Study 12		
		L-Asparaghe	19.62	28 (16.4 - 67 2), 9 2				n,	*	Ŧ			Study 13		
		5-Mithythodor	8.7	42.70 (19.92 - 55.8	15.1 (3.9 - 26.)	1,12.5 (0.3 - 1	6.7)		•	Ŧ				, I , , , , , , , , , , , , , , , , , , ,	
		L-Threonine	83.19	36.2 (10.82 - 01.58	127 (4,634 - 2	0.4:10.16-3	4149(24-7.4)	16.0 - 20: 18 (6.4	27.6) H	Ŧ	P			6 100 200 303 Concentration Range (umolimmol_creation	400 500
		Creatine	720.0	45 (2 - 125) 112 (0	654) 28 (5 - 9	5, 167 (124 - 2	10)		н	Ŧ	P	Study	Concentration	Reference	
		cis-Aconitic ac	14.39	37.8 (37.3 - 62.3).	88(947-92.5	645 (02.4 - 7	6.6); 73.0 (04 - 100	3), 67.9 (14.3 - 10	7) M	Ŧ	г	Shudy 1	248.5 (72 - 425)	Levenern CP, Ciell A, Metsoonic A: Univery o healthy intents and children. Pediatr Nephot	values and glycolate excretion in 1990 Seg.4(5) 483-7 (Cubred)
		L-Trystophen	35.79	5262(1310-921	0.7.04(2-10.4	73, 12, 02, (5, 15	-20.09) 44(10 - 7	0	N	Ŧ	E.	Study 2	169.5 (45 - 297)	Leunern 89, Ciel A, Meteonic A: Urinery o healthy inherts and children. Pediatr Nephrol	
		L-Certifice	15.01	10 (16.8 - 19.2), 57						Ŧ		Shaty 3	30(15.8 - 52.8)	Celgy Scientific Tables, 8th Rev edition, pp. Castwell, N.J.; Medical education DV., Obe-C	
								13 ED 7647 (PM P				Shuth 4	110.04 - 100	1902.	value and diviculate excretion in
		L-Serine	17.32	0881.(0 - 3387); 2.6 112.45); 26.6 (12.6						7		Shady 4	67.9(36-324.0)	Deathy infants and children. Pediatr Nephrol Ourieral F, Bachmann C. Ago-robited reform In a healthy Turkish pediatric population. Clin	
		L-Tyrosine	87.51	0.72 (0.10 - 1.00), 1 - 101), 8.8 (4.3 - 13	r # (2.666 - 19) I)	17.7 (8-18), 4	x (x 96 - 6.05) 27.3	0 (11/37 - 41/33)	N N	Ŧ	Г	Dudy 5	6r #(36 - 324.4)	in a healthy Turkish pediatric population. Clin Educed	unen. 1/94 Jan(40(6)862-8.
		C lutabel				n Stat Q	Expect Q	P Value	Donferrani	FOR	Details	D	higher concentration higher concentration	n in 't' samples	
		CL.YCOLY			21 2		10.3	0.0127	0.253	0.11	J.6.L	g -	- righer concentration	ter i samples	
		GLUCOSE	ALANINE CYCLE		12 4	29.1	7.54	0.0163	0.325	0.11	J.61				
					20 4		8.76	0.0226	0.45	0.11	2.4L	n -			
			INE HE SANKA 25H		25 3		11.9	0.0274	0.548	0,11	1.4L	8.			
		PROBLEM			19 1	5.4	2.76	0.0586	1.0	0.195	2.41	8			
		AREINEN	E AND PROLIDE H	ETABOLESH	28 3	17.3	7.66	0.009	1.0	0.254	J.dl	- 1 m			
		100000	CED CYCLE		22 6		5.95	0.15	1.0	0.375	1.41				
			ETABOLISH		45 2		3.27	0.19	1.0	0.423	1.41	2 -			
			METABOLISM		19 1		8.28	0.299	1.0	0.536	Jink				
					6 3 24 4		4.51	0.399	1.0	0.58	3.4L				
		IPEA CY			20 5		48	0.494	1.0	0.58	J.AL				—
		1019-104	HAVE HE SAEOLISH	•	эн 2	2.26	2.51	0.495	1.0	0.58	J.AL				unites failures
			IONE METABOLIS	н	10 2		3.18	0.5	1.0	0.652	1.41		LTPer L	Lease Lines Lines	nn n
			RECYCLING		18 7		4.06	0.541	1.0	0.652	1.41	PROTED	BIOSYNTHESIS		-
		and the second second	AND HYPOTAURD		8 1 7 1		5.25 9.3	0.554	1.0	0.852	J.dl	L-Gitter	ic acid; L-Tyrosine; L-P	henylalanina; L-Alanine; L-Proine; L-Th	reanine; L-Asparagine; L-
			AND HYPOTAURD	NE NETABOLISH	7 1		93	0.64	1.0	0.096	J. 41	Isoleuci	ne; L-Histidine; L-Lysi ine; L-Yaline; L-Trypto	me: L-Aspartic acid: L-Arginine: L-Cysteiry	s; L-Glutamine; L-Leucine;

- Designed to handle lists of metabolites (with or without concentration data)
- Modeled after Gene Set Enrichment Analysis (GSEA)
- Supports over representation analysis (ORA), single sample profiling (SSP) and quantitative enrichment analysis (QEA)
- Contains a library of 6300 predefined metabolite sets including 85 pathway sets & 850 disease sets

Enrichment Analysis

- •Purpose: To test if there are biologically meaningful groups of metabolites that are significantly enriched in your data
- •Biological meaningful in terms of:
 - Pathways
 - Disease
 - Localization
- Currently, MSEA only supports <u>human</u> metabolomic data

Upload Compound List

Stational and a second s	ist of compound names (over representation analysis)	
	Please enter a one-column compound list: Acetoacetic acid Beta-Alanine Creatine Dimethylglycine Fumaric acid Glycine Homocysteine L-Solucine L-Serine L-Phenylalanine L-Serine L-Threonine L-Tyrosine L-Valine Phenylpyruvic acid Propionic acid Pyruvic acid Sarcosine Input Type: Compound names Imput Type: Use example data (input type: compound names) st of compounds with concentration values (single sample profil concentration table (guantitative enrichment analysis)	

Perform Compound Name Standardization

Compound Name/ID Standardization:

PLease note:

a

Volcad Processing

Name check

Conc. check

Data check

Data filter

Data editor Image options Normalization Enrichment Download Exit

Missing value

- · Query names in normal white indicate exact match marked by "1" in the download file;
- · Query names highlighted in red indicate no match marked by "0" in the downloaded file;
- For compound name mapping, the no match query names will be highlighted in yellow indicate no exact match found. You
 should click the View link to perform approximate search and manually select the correct match if found;
- Greek alphabets are not recognized, they should be replaced by English names (i.e. alpha, beta)

Query	Hit	HMDB	PubChem	KEGG	Details
Acetoacetic acid	Acetoacetic acid	HMDB00060	<u>96</u>	<u>C00164</u>	
Beta-Alanine	Beta-Alanine	HMDB00056	239	<u>C00099</u>	
Creatine	Creatine	HMDB00064	<u>586</u>	<u>C00300</u>	
Dimethylglycine	Dimethylglycine	HMDB00092	<u>673</u>	<u>C01026</u>	
Fumaric acid	Fumaric acid	HMDB00134	444972	C00122	
Glycine	Glycine	HMDB00123	750	<u>C00037</u>	
Homocysteine	Homocysteine	HMDB00742	778	<u>C05330</u>	
L-Cysteine	L-Cysteine	HMDB00574	<u>5862</u>	<u>C00097</u>	
L-Isolucine	-2		1.00		View
L-Phenylalanine	L-Phenylalanine	HMDB00159	<u>6140</u>	<u>C00079</u>	
L-Serine	L-Serine	HMDB00187	<u>5951</u>	<u>C00065</u>	
L-Threonine	L-Threonine	HMDB00167	<u>6288</u>	C00188	
L-Tyrosine	L-Tyrosine	HMDB00158	6057	<u>C00082</u>	1
L-Valine	L-Valine	HMDB00883	<u>6287</u>	<u>C00183</u>	
Phenylpyruvic acid	Phenylpyruvic acid	HMDB00205	<u>997</u>	C00166	
Propionic acid	Propionic acid	HMDB00237	1032	<u>C00163</u>	
Pyruvic acid	Pyruvic acid	HMDB00243	1060	<u>C00022</u>	
Sarcosine	Sarcosine	HMDB00271	1088	C00213	

You can download the result here

Submit

Select a Metabolite Set Library

	ease select a metabolite set library
	Pathway-associated metabolite sets
	This library contains 88 metabolite sets based on normal metabolic pathways.
	Disease-associated metabolite sets (Blood)
	This library contains 416 metabolite sets reported in human blood.
	Disease-associated metabolite sets (Urine)
	This library contains 346 metabolite sets reported in human urine.
	Disease-associated metabolite sets (CSF)
	This library contains 124 metabolite sets reported in human cerebral spinal fluid (CSF).
	SNP-associated metabolite sets
	This library contains 4,500 metabolite sets based on their associations with the detected single nucleotide polymorphisms (SNPs) loci.
	Predicted metabolite sets
	This library contains 912 metabolic sets that are predicted to be changed in the case of dysfunctional enzyme using genome-scale network model of human metabolism.
	Cocation-based metabolite sets
	This library contains 57 metabolite sets based on organ, tissue, and subcellular localizations.
	Self-defined metabolite sets
	Click here to upload your own customized metabolite set library
	Only use metabolite sets containing at least 2 compounds
Ple	ease specify a reference metabolome
	Use all the compounds in the selected metabolite set library
	Upload a reference metabolome based on your analytical platform

Metabolite Sets Enrichment Overview

Click on details to see more

	Metabolite Set	Total	Hits	Expect	P value	Holm P	FDR	Detal
	GLYCINE, SERINE AND THREONINE METABOLISM	26	9	0.567	2.74E-10	2.19E-8	2.19E-8	View
	PROTEIN BIOSYNTHESIS	19	6	0.415	9.93E-7	7.85E-5	3.97E-5	View
	PHENYLALANINE AND TYROSINE METABOLISM	13	5	0.284	3.15E-6	2.46E-4	8.4E-5	View
	METHIONINE METABOLISM	24	5	0.524	8.98E-5	0.00691	0.0018	View
	AMMONIA RECYCLING	18	3	0.393	0.00581	0.441	0.0774	View
	PROPANOATE METABOLISM	18	3	0.393	0.00581	0.441	0.0774	View
	CYSTEINE METABOLISM	8	2	0.175	0.0117	0.863	0.133	View
	GLUTATHIONE METABOLISM	10	2	0.218	0.0183	1.0	0.162	View
	BETAINE METABOLISM	10	2	0.218	0.0183	1.0	0.162	View
	ASPARTATE METABOLISM	12	2	0.262	0.0261	1.0	0.209	View
	VALINE, LEUCINE AND ISOLEUCINE DEGRADATION	36	3	0.785	0.0397	1.0	0.288	View
	TYROSINE METABOLISM	38	3	0.829	0.0456	1.0	0.304	View
	UREA CYCLE	20	2	0.436	0.0677	1.0	0.417	View
	CITRIC ACID CYCLE	23	2	0.502	0.0868	1.0	0.496	View
	CATECHOLAMINE BIOSYNTHESIS	5	1	0.109	0.105	1.0	0.536	View
	ARGININE AND PROLINE METABOLISM	26	2	0.567	0.107	1.0	0.536	View
	ALANINE METABOLISM	6	1	0.131	0.124	1.0	0.585	View
	TAURINE AND HYPOTAURINE METABOLISM	7	1	0.153	0.144	1.0	0.638	View
	BUTYRATE METABOLISM	9	1	0.196	0.181	1.0	0.758	View
	PANTOTHENATE AND COA BIOSYNTHESIS	10	1	0.218	0.199	1.0	0.758	View
	KETONE BODY METABOLISM	10	1	0.218	0.199	1.0	0.758	View
	GLUCOSE-ALANINE CYCLE	12	1	0.262	0.234	1.0	0.851	View
	BETA-ALANINE METABOLISM	13	1	0.284	0.251	1.0	0.873	View
	SPHINGOLIPID METABOLISM	15	1	0.327	0.284	1.0	0.908	View
	MITOCHONDRIAL ELECTRON TRANSPORT CHAIN	15	1	0.327	0.284	1.0	0.908	View
	INSULIN SIGNALLING	19	1	0.415	0.345	1.0	1.0	View
	PYRUVATE METABOLISM	20	1	0.436	0.36	1.0	1.0	View
Ì	GLYCOLYSIS	21	1	0.458	0.374	1.0	1.0	View
ĺ	PORPHYRIN METABOLISM	22	1	0.48	0.388	1.0	1.0	View
	GLUCONEOGENESIS	27	1	0.589	0.454	1.0	1.0	View
	PYRIMIDINE METABOLISM	36	1	0.785	0.556	1.0	1.0	View
1	BILE ACID BIOSYNTHESIS	49	1	1.07	0.672	1.0	1.0 6	View

The Matched Metabolite Set

Metabolism of the compound of interest in SMPDB

Single Sample Profiling (SSP) Basically used by doctors to analyze a patient

Aim: compare to normal references

	A list of compound names (over representation analysis)	
Processing Normalization	A list of compounds with concentration values (single sample profiling)	
Enrichment	Enter your data below (two-column data):	
Exit	L-Isolecine 0.34 Fumaric acid 0.47 Acetone 0.58 Succinic acid 9.4 1-Methylhistidine 9.6 L-Asparagine 19.62 3-Methylhistidine 9.7 L-Threonine 93.19 Creatine 720 cis-Aconitic acid 14.39 L-Tryptophan 35.78 L-Carnitine 16.01 L-Serine 17.32 L-Tyrosine 67.51 L-Alanine 219.02 L-Fucces 20.37 D-Glucose 23.92 Pyroglutamic acid 26.38	
	Input Type: Compound names	
	Biofluid (unit): Urine (umol/mmol_creatinine)	
	Use the example data - urine sample (umol/mmol_creatinine)	
	Submit	

Concentration Comparison

Uplead
 Processing
 Name check
 Conc. check
 Data check
 Missing value
 Data filter
 Data editor
 Image options
 Normalization
 Enrichment
 Download
 Exit

箭

Comparison with Reference Concentration

Note: reference concentrations are in the form of mean(min - max) format. In cases where the ranges were not reported in the original literature, the min and max were calculated using the 95% confidence intervals. In the *Comparison* column, H, M, L means higher, medium (within range), lower compared to the reference concentrations. Click the Image Icon link to see a graphical summary for the comparisons.

Compound	Concentration	Reference concentrations	Comparison	Detail	Include
L-Isoleucine	0.34	3.75 (1 - 6.5); 3.55 (1.7 - 5.4); 0.02125 (0.0086 - 0.0339); 1.3 (0.5 - 2.7); 1.3 (0.4 - 2.6)	м	View	
Fumaric acid	0.47	0.95 (0.02 - 1.88); 0.4 (0.2 - 0.8); 10.4 (2.8 - 53.7); 0.5 (0.1 - 1.7); 10.7 (0.1 - 28.2); 0.1 (0.1 - 1.7); 0.25 (0.1 - 0.4); 0.7 (0.2 - 1.7)	м	View	
Acetone	0.58	2.24 (0 - 6.37); 3.9 (0.8 - 17.6)	м	View	
Succinic acid	9.4	12.6 (0.47 - 24.73); 7.5 (0.5 - 16); 7.7 (1.9 - 20); 197.2 (29.4 - 486.2); 185.4 (6 - 342.6); 11.6 (4 - 27.3); 14.48 (11.28 - 17.68); 8.25 (0.5 - 16); 5.6 (1.8 - 9.4); 9.9 (4.9 - 14.9); 14.4 (9.5 - 19.3); 6.2 (2.5 - 13.5); 4.7 (1.1 - 14.5); 6 (0.3 - 33.3)	м	View	
1-Methylhistidine	9.6	4.6 (1.9 - 7.3); 2.3 (0 - 7.4); 46.1 (0 - 99.6); 15.9 (0 - 35.4); 28.1 (0 - 59.9); 1.3 (0 - 4.06); 45.5 (3.9 - 87.1); 33.6 (0 - 70); 15.9 (0 - 35.4); 30 (0 - 73); 0.00285 (0.0019 - 0.0038); 8.3 (2.4 - 28.4)	м	View	
L-Asparagine	19.62	0.96 (0.31 - 1.61); 10.52 (6.67 - 14.37); 10 (4.6 - 16.32); 10.595 (4.66 - 16.53); 8.8 (4.6 - 17.7); 9.5 (3 - 26); 10.1 (4.6 - 17.8)	м	View	
3-Methylhistidine	9.7	42.76 (19.92 - 65.6); 12.5 (8.3 - 16.7); 0.0149 (0.0012 - 0.0286); 16.5 (2.8 - 59.8)	м	View	
L-Threonine	93.19	36.2 (10.82 - 61.58); 14.88 (5.17 - 24.59); 14.6 (6.6 - 29.3); 13.3 (6.4 - 25.2)	н	View	~
Creatine	720	113 (0 - 654); 113 (0 - 654); 46 (3 - 448)	н	View	4
cis-Aconitic acid	14.39	13 (2.7 - 44); 67.9 (14.3 - 100.7); 73.8 (64 - 130.3); 37.9 (17.3 - 63.3); 29.8 (14.7 - 93.1); 54.5 (32.4 - 76.6); 10.3 (5.2 - 16.3); 20.9 (3.8 - 95.3)	м	View	
L-Tryptophan	35.78	13.52 (6.15 - 20.89); 5.6 (9.3 - 2.1); 6.3 (3.4 - 11.1)	н	View	-
L-Carnitine	16.01	4.5 (0.62 - 15.2); 5 (0.7 - 16.4)	М	View	

Concentration Comparison (cont.)

Quantitative Enrichment Analysis (QEA)

A list of compounds with concentration values (single sample profiling)
 A concentration table (quantitative enrichment analysis)
Upload your concentration data (.csv or .txt)
Group Label: Obscrete (Classification) Continuous (Regression)
ID Type: Compound names
Data File: Choose File No file chosen
Submit
Try our test data:
Data ID Type Group Label Description
Operation of the second s
Urinary metabolite concentrations from 97 cancer patients measured by 1H NMR. Phenotype: muscle gain (percentage within 100 days, negative values indicate muscle loss)

Result

Fold Enrichment

Metabolite Set	Total	Hits	Statistic	Expected	P value	Holm P	FDR	Details	
GALACTOSE METABOLISM	25	3	18.866	1.3158	1.4154E-6	6.5107E-5	6.5107E-5		k on detail
TRYPTOPHAN METABOLISM	34	1	25.111	1.3158	3.4524E-6	1.5536E-4	7.9406E-5	View	
VALINE, LEUCINE AND ISOLEUCINE DEGRADATION	36	2	21.24	1.3158	1.569E-5	6.9038E-4	1.559E-4	View S	ee more
GLYCOLYSIS	21	2	17.511	1.3158	2.0894E-5	8.9845E-4	1.559E-4	View	\wedge
INSULIN SIGNALLING	19	2	17.511	1.3158	2.0894E-5	8.9845E-4	1.559E-4	View N	
PYRUVATE METABOLISM	20	3	15.116	1.3158	2.11E-5	8.9845E-4	1.559E-4	View	
BETAINE METABOLISM	10	2	19.344	1.3158	2.5834E-5	0.0010334	1.559E-4	View	
MITOCHONDRIAL ELECTRON TRANSPORT CHAIN	15	2	17.669	1.3158	2.9636E-5	0.0011558	1.559E-4	View	
PROPANOATE METABOLISM	18	1	20.811	1.3158	3.0502E-5	0.0011591	1.559E-4	View	71

The Matched Metabolite Set

Pathway Analysis Module

Home

FAQs

About

Please choose a functional module to proceed: Overview Statistical Analysis Enrichment Analysis Data Formats This module offers various commonly used statistical and machine learning methods including t-tests, ANOVA, PCA and PLS-DA. It also provides clustering Tutorials and visualization tools to create dendrograms and heatmaps as well as to classify based on random Resources forests and SVM. Update History User Stats Pathway Analysis Time Series Analysis Contact This module supports pathway analysis (integrating enrichment analysis and pathway topology analysis) and visualization for 21 model organisms, including Human, Mouse, Rat, Cow, Chicken, Zebrafish, Arabidopsis thaliana, Rice, Drosophila, Malaria, S. TMIC cerevisae, E.coli. and others, with a total of ~1600 factor. metabolic pathways. Power Analysis Biomarker Analysis This module uses pilot data to calculate the minimum number of samples required to detect a statistically signficant difference between two populations with a given degree of confidence (called Power Analysis).

This module performs metabolite set enrichment analysis (MSEA) for human and mammalian species based on several libraries containing ~6300 groups of metabolite sets. Users can upload either 1) a list of compounds, 2) a list of compounds with concentrations, or 3) a concentration table.

This module supports temporal and two-factor data analysis including data overview, two-way ANOVA, and empirical Bayes time-series analysis for detecting distinctive temporal profiles. It also supports ANOVAsimultaneous component analysis (ASCA) to identify major patterns associated with each experimental

This module performs various ROC curve based biomarker analyses for a single or multiple biomarkers. It also allows users to manually specify biomarker models as well as new sample prediction.

Pathway Analysis

- •Purpose: to extend and enhance metabolite set enrichment analysis for pathways by
 - Considering pathway structures
 - Supporting pathway visualization
- Currently supports analysis for 21 diverse (model) organisms such as humans, mouse, drosophila, arabidopsis, *E. coli*, yeast, etc. (KEGG pathways only)

Data Upload

fi	
Uplead	Please enter a one-column compound list:
Processing	
Normalization	
Pathway	
Download	
Exit	
	Input Type: -Please specify Use our example data Submit Or upload a concentration table (.csv or .txt): Group Label: Discrete (Classification) Continuous (Regression)
	ID Type: Please specify
	Data File: Choose File No file chosen
	Use the example data
	Data Description
	Dataset Urinary metabolite concentrations from 77 cancer patients measured by 1H NMR. Phenotype: N - cachexic; Y - control
	Submit

Perform Data Normalization

Data Normalization:

The normalization procedures are grouped into three categories. The sample normalization allows general-purpose adjustment for differences among samples; data transformation and scaling are two different approaches to make features more comparable. You can use one or combine them to achieve better results.

• A second state of the		
Sample specific normalization (i.e. dry w	eight, volume)	Click here to specify
Normalization by sum		
Normalization by median		
Normalization by reference sample		
Specify a reference sample	PIF_178	
Create a pooled average sample from	group cachexic 💌	
Normalization by reference feature 1,6-Ant	ydro-beta-D-glucose	
Data transformation		
None		
Log transformation (generalized loga	rithm transformation or glog)	
Cube root transformation (take cube root of	data values)	
Data scaling		
None		
Auto scaling (mean-centered and divided	by the standard deviation of eac	ch variable)
Pareto scaling (mean-centered and divided	by the square root of standard of	deviation of each variable)

Select Pathway Libraries

Uplead Processing Normalization Pathway Set parameter View result	Mammals	 Homo sapiens (human) [80] Mus musculus (mouse) [82] Rattus norvegicus (rat) [81] Bos taurus (cow) [81]
Download Exit	Birds	Gallus gallus (chicken) [78]
	Fish	ODanio rerio (zebrafish) [81]
	Insects	Orosophila melanogaster (fruit fly) [79]
	Nematodes	Caenorhabditis elegans (nematode) [78]
	Fungi	Saccharomyces cerevisiae (yeast) [65]
	Plants	Oryza sativa japonica (Japanese rice) [83] Arabidopsis thaliana (thale cress) [87]
	Parasites	Schistosoma mansoni [69] Plasmodium falciparum 3D7 (Malaria) [47] Trypanosoma brucei [54]
	Prokaryotes	Escherichia coli K-12 MG1655 [87] Bacillus subtilis [80] Pseudomonas putida KT2440 [89] Staphylococcus aureus N315 (MRSA/VSSA) [73] Thermotoga maritima [57] Synechococcus elongatus PCC7942 [75] Mesorhizobium loti [86]

Perform Network Topology Analysis

Please specify a reference metabolome: Use all compounds in the selected pathways Upload a reference metabolome based on your technical platform Identifies which metabolic pecify pathway analysis algorithms: pathways have compounds (from the (Goeman et al., 2004) **Global Test** input lists) that are over-Pathway Enrichment Analysis represented and have (Hummel et al., 2008) Global Ancova significant perturbations to their concentrations Relative-betweeness Centrality Pathway Topology Analysis Topological Out-degree Centrality Analysis measures the centrality of a metabolite in a metabolic network Submit or a metabolic pathway.

MetPA's pathway topological analysis is based on the centrality measures of a metabolite in a given metabolic network. Centrality is a local quantitative measure of the position of a node relative to the other nodes, and is often used to estimate a node's relative importance or role in network organization. Since metabolic networks are directed graphs, MetPA uses relative betweeness centrality and out degree centrality measures to calculate compound importance. 78

Pathway Visualization

The pathway impact is calculated as the sum of the importance measures of the matched metabolites normalized by the sum of the importance measures of all metabolites in each pathway. 79

Pathway Visualization (cont.)

Result

Pathway Name	Total	Hits	р	-log(p)	Holm p	FDR	Impact	Details
Valine, leucine and isoleucine degradation	40	2	1.1954E-4	9.0319	0.0059769	0.0031356	0.02232	KEGG SMP
Valine, leucine and isoleucine biosynthesis	27	4	1.2542E-4	8.9838	0.0061458	0.0031356	0.04823	KEGG SMP
Glycine, serine and threonine metabolism	48	8	2.4586E-4	8.3107	0.011801	0.0040977	0.48394	KEGG SMP
Methane metabolism	34	6	3.8485E-4	7.8626	0.018088	0.0043833	0.16466	KEGG
Sulfur metabolism	18	2	4.755E-4	7.6512	0.021873	0.0043833	0.03307	KEGG SMP
Arginine and proline metabolism	77	6	6.578E-4	7.3266	0.029601	0.0043833	0.06203	KEGG SMP
Aminoacyl-tRNA biosynthesis	75	10	6.6275E-4	7.3191	0.029601	0.0043833	0.11268	KEGG
Nicotinate and nicotinamide metabolism	44	5	7.0133E-4	7.2625	0.030157	0.0043833	0.04113	KEGG SMP
Glutathione metabolism	38	2	0.0011587	6.7605	0.048664	0.0063514	0.0019	KEGG SMP
Propanoate metabolism	35	4	0.0013934	6.576	0.057129	0.0063514	0.01603	KEGG SMP
Galactose metabolism	41	3	0.001486	6.5116	0.059441	0.0063514	0.01992	KEGG SMP
Taurine and hypotaurine metabolism	20	3	0.0015243	6.4862	0.059449	0.0063514	0.35252	KEGG SMP
Cyanoamino acid metabolism	16	4	0.0016826	6.3874	0.06394	0.0064716	0.0	KEGG
Nitrogen metabolism	39	7	0.0021434	6.1454	0.079305	0.0070701	0.00763	KEGG SMP
Inositol phosphate metabolism	39	1	0.002215	6.1125	0.079741	0.0070701	0.13703	KEGG SMP
Pyruvate metabolism	32	4	0.0022624	6.0913	0.079741	0.0070701	0.41957	KEGG SMP
Cysteine and methionine metabolism	56	2	0.0026796	5.9221	0.091106	0.0078811	0.02846	KEGG SMP SMP
Alanine, aspartate and glutamate metabolism	24	6	0.0029727	5.8183	0.0981	0.0082576	0.25546	KEGG SMP SMP SMP
Pantothenate and CoA biosynthesis	27	4	0.0034143	5.6798	0.10926	0.0089486	0.18014	KEGG SMP
Phenylalanine metabolism	45	6	0.0036884	5.6026	0.11434	0.0089486	0.0315	KEGG SMP

Submit

Select a Module (Biomarker Analysis)

Home Overview Data Formats FAQs Tutorials Resources Update History User Stats Contact About

Please choose a functional module to proceed:

Statistical Analysis

This module offers various commonly used statistical and machine learning methods including t-tests, ANOVA, PCA and PLS-DA. It also provides clustering and visualization tools to create dendrograms and heatmaps as well as to classify based on random forests and SVM.

Pathway Analysis

This module supports pathway analysis (integrating enrichment analysis and pathway topology analysis) and visualization for 21 model organisms, including Human, Mouse, Rat, Cow, Chicken, Zebrafish, Arabidopsis thaliana, Rice, Drosophila, Malaria, S. cerevisae, E.coli. and others, with a total of ~1600 metabolic pathways.

Power Analysis

This module uses pilot data to calculate the minimum number of samples required to detect a statistically signficant difference between two populations with a given degree of confidence (called Power Analysis).

Enrichment Analysis

This module performs metabolite set enrichment analysis (MSEA) for human and mammalian species based on several libraries containing ~6300 groups of metabolite sets. Users can upload either 1) a list of compounds, 2) a list of compounds with concentrations, or 3) a concentration table.

C Time Series Analysis

This module supports temporal and two-factor data analysis including data overview, two-way ANOVA, and empirical Bayes time-series analysis for detecting distinctive temporal profiles. It also supports ANOVAsimultaneous component analysis (ASCA) to identify major patterns associated with each experimental factor.

Biomarker Analysis

This module performs various ROC curve based biomarker analyses for a single or multiple biomarkers. It also allows users to manually specify biomarker models as well as new sample prediction.

Biomarker Analysis

- •Purpose is to find biomarkers using ROC (receiver operator characteristic) curves with high sensitivity and specificity
- Maximize AUC under ROC curve while minimizing the number of metabolites used in the biomarker panel
- •3 different modules
 - univariate single marker at a time
 - multivariate many combinations of biomarkers manual – user choice

Select Test Data Set 1

Hip IMAD Chy DMA	MetaboAnalyst 3.0 – a comprehensive tool suite for metabolomic data analysis
fit Upload	Upload your data table (.csv or .txt):
 Processing Normalization ROC Analysis Download Exit 	Data Type: Concentrations Spectral bins Peak intensity table Format: Samples in rows Data File: Choose File no file selected
	Data Description
Click Her	Dataset1 Metabolite concentrations of 90 human plasma samples measured by 1H NMR. Phenotype labels: 0 - Controls; 1 - Patients.
	Dataset2 Metabolite concentrations of 77 human plasma samples. Among them, the phenotypes of 12 samples are empty/unknown. Their class can be predicted using the Tester module.
	Click Here

Perform Data Integrity Check

OV DMA	MetaboAnalyst 3.0 – a comprehensive tool suite for metabolomic data analysis
A da i da li	
龠	Data Integrity Check:
Upload	1. Checking the class labels - at least three replicates are required in each class.
Processing	2. If the samples are paired, the pair labels must conform to the specified format.
Pre-process	3. The data (except class labels) must not contain non-numeric values.
Data check Missing value	4. The presence of missing values or features with constant values (i.e. all zeros)
Data filter Data editor	Data processing information:
Image options	Checking data contentpassed
Normalization	Samples are in rows and features in columns
ROC Analysis	The uploaded file is in comma separated values (.csv) format.
Download	The uploaded data file contains 90 (samples) by 42 (compounds) data matrix.
Exit	2 groups were detected in samples.
	Samples are not paired.
	All data values are numeric.
	A total of 5 (0.1%) missing values were detected.
	By default, these values will be replaced by a small value.
	Click Skip button if you accept the default practice
	Or click Missing value imputation to use other methods

Perform Normalization

	Data Normalization:
	Data Normalization.
Upload	The normalization procedures are grouped into three categories. The sample normalization allows general-purpose adjustment for differences
Processing	among samples; data transformation and scaling are two different approaches to make features more comparable. You can use one or combine
Pre-process	them to achieve better results.
Data check	
Missing value	
Data filter	
Data editor	Sample normalization
Image options	None
Normalization	
ROC Analysis	Sample specific normalization (i.e. dry weight, volume)
Download	Normalization by sum
Exit	Normalization by median
	Normalization by reference sample
	Specify a reference sample
	Create a pooled average sample from group
	Normalization by reference feature 2-Hydroxybutyrate
	Data transformation
	None
	Log transformation (generalized logarithm transformation or glog)
	Cube root transformation (take cube root of data values)
	Data scaling
	None
	Auto scaling (mean-centered and divided by the standard deviation of each variable)

Select Multivariate Option

ROC Analysis Options :

备

Processing

Multivariate

Tester

Download

Exit

Choose an analysis mode:

Classical univariate ROC curve analyses

Perform classical univariate ROC curve analyses, such as to generate ROC curve, to calculate AUC or partial AUC as well as their 95% confidence intervals, to compute optimal cutoffs for any given feature, as well as to generate performance tables for sensitivity, specificity, and confidence intervals at different cutoffs.

Multivariate ROC curve based exploratory analysis (Explorer)

Perform automated important feature identification and performance evaluation. ROC curve analyses are performed based on three multivariate algorithms - support vector machines (SVM), partial least squares discriminant analysis (PLS-DA), and random forests.

ROC curve based model evaluation (Tester)

Users can manually select any combination of features to create biomarker models using any of the three algorithms mentioned above. The module also allows users to **hold out** a subset of samples for extra validation purpose, as well as to **predict class for new samples** (samples without class labels).

ROC curve analysis

Name 🗘 AUC \$ T-tests 0 Log2 FC \$ ROC Curve Details Glycerol 0.97111 1.6955E-16 1.3795 View -Acetate 0.83278 2.9672E-6 1.0714 View -Trimethylamine 0.77944 1.9543E-6 -0.65174View -Pyruvate 0.75111 1.143E-4 -0.45701 View -Choline 0.74861 0.0029303 1.2869 View -Propylene glycol 0.72583 7.8583E-5 -0.86155 View -0.705 2.6036E-4 0.44779 Alanine View -Arginine 0.69639 1.6421E-4 0.44837 View -Isoleucine 0.69167 1.2424E-4 0.71957 View -

In **Details** you get the cut-off point, Sensitivity and Specificity

Select a Module (Power Analysis)

Home Overview Data Formats FAQs Tutorials Resources Update History User Stats Contact About

Please choose a functional module to proceed:

Statistical Analysis

This module offers various commonly used statistical and machine learning methods including t-tests, ANOVA, PCA and PLS-DA. It also provides clustering and visualization tools to create dendrograms and heatmaps as well as to classify based on random forests and SVM.

Pathway Analysis

This module supports pathway analysis (integrating enrichment analysis and pathway topology analysis) and visualization for 21 model organisms, including Human, Mouse, Rat, Cow, Chicken, Zebrafish, Arabidopsis thaliana, Rice, Drosophila, Malaria, S. cerevisae, E.coli. and others, with a total of ~1600 metabolic pathways.

O Power Analysis

This module uses pilot data to calculate the minimum number of samples required to detect a statistically signficant difference between two populations with a given degree of confidence (called Power Analysis).

C Enrichment Analysis

This module performs metabolite set enrichment analysis (MSEA) for human and mammalian species based on several libraries containing ~6300 groups of metabolite sets. Users can upload either 1) a list of compounds, 2) a list of compounds with concentrations, or 3) a concentration table.

C Time Series Analysis

This module supports temporal and two-factor data analysis including data overview, two-way ANOVA, and empirical Bayes time-series analysis for detecting distinctive temporal profiles. It also supports ANOVAsimultaneous component analysis (ASCA) to identify major patterns associated with each experimental factor.

Biomarker Analysis

This module performs various ROC curve based biomarker analyses for a single or multiple biomarkers. It also allows users to manually specify biomarker models as well as new sample prediction.

Statistical Power

- Statistical power is the ability of a test to detect an effect, if the effect actually exists
 - A power of 0.8 in a clinical trial means that the study has a 80% chance of ending up with a statistically significant treatment effect if there really was an important difference between treatments.
- To answer research questions:
 - How powerful is my study?
 - How many samples do I need to have for what I want to get from the study?

Statistical Power (cont.)

- The statistical power of a test depends:
 - 1. Sample size,
 - 2. Significance criterion (alpha)
 - 3. Magnitude of the effect

Power vs. Sample size curve

At least 60 samples/group will needed to get a power of 0.8⁹²

Not Everything Was Covered

- Clustering Methods (K-means, SOM)
- Classification Methods (SVM, Random Forests)
- SAM and EDAM (used for identification of differentially expressed genes in microarray experiments)
- Time-series data analysis & Two factor data analysis
- Integrative pathway analysis (gene and metabolite)
- Batch effect correction each batch contains roughly the same numbers of class labels (i.e. control vs. disease); It can not adjust batch effect if the control and disease are in different batches. Quality control samples should be named as QC. MetaboAnalyst will detect and align all the tables
- Lipidomics tool Calculate the upper limit and most probable concentration from lipidomics data

Time Series Analysis in MetaboAnalyst

Integrative Pathway Analysis

Batch Adjustment

96

Calculate the upper limit and most probable concentration from lipomics data:

Upload your lipid concentration file (see below for instructions): Choose File No file chosen

Submit

Isomers merged as [iso #] Isomers listed individually

Lipidomics

File Format

- · The file must be in comma separated format (.csv);
- · The first column is the sample name;
- The second column is lipid class names. Currently, only the following lipid classes are supported:
 - DG: Diacylglycerol
 - PC: Phosphatidylcholine
 - PE: Phosphatidylethanolamine
 - TG: Triacylglycerol
- The first row are free fatty acid names;
- · No missing values are allowed (please replace by 0);

A screenshot of sample data is shown below:

Sample ID	Lipid Class	14:0	15:0	16:0	18:0	20:0	22:0	24:0	14:1(9Z)	16:1(9Z)
S-FB	DG	2.21	0.83	15.75	8.3	0.21	0.2	0.22	0.59	1.65
P-2007-07-06	DG	5.48	1.54	16.74	9.19	0.38	0.55	0.49	0.61	0.97
P-2007-07-09	DG	4.26	1.12	16.45	9.89	0.45	0.64	0.47	0.36	1.35
S-FB	PC	18.87	11.31	1290.74	538.46	1.92	0.41	0.47	1.21	29.96
P-2007-07-06	PC	12.57	10.14	860.77	432.63	1.32	0.33	0.95	0.27	11.18
P-2007-07-09	PC	19.24	10.27	1355.83	585.11	2.69	0.48	0.65	0.75	34.09
S-FB	PE	2.03	0.67	37.35	81.39	0.44	0.44	3.29	0.41	2.07
P-2007-07-06	PE	6.79	3.34	42.03	55.62	1.14	0.83	1.47	0.92	0.9
P-2007-07-09	PE	4.65	1.58	77.05	102.06	0.62	0.69	0.47	0.35	3.41
S-FB	TG	35.71	6.26	319.44	71.63	1.52	0.56	0.81	5.05	40.52
P-2007-07-06	TG	56.4	8.53	311.11	80.71	2.32	0.82	1.54	5.09	28.5
P-2007-07-09	TG	65.76	9.43	479.55	107.13	2.41	1.18	1.77	8.73	69.54

97

