Regulation of Liver and Adipose Tissue
Lipogenesis in Human Obesity

Ludger Scheja

NuGO Week 2011, Wageningen
De Novo Lipogenesis (DNL) Pathway

- **FASN**: fatty acid synthase
- **SCD**: stearoyl CoA desaturase
- **ELOVL6**: fatty acid elongase-6

Malonyl-CoA
- **FASN** → **14:0** myristic
- **SCD** → **14:1n-5** myristoleic

16:1n-7 palmitoleic
- **SCD** → **16:0** palmitic
- **ELOVL6** → **18:1n-7 vaccenic**
- **SCD** → **18:0** stearic
- **SCD** → **18:1n-9 oleic**

Very long-chain FA (VLCFA)
De Novo Lipogenesis (DNL) in Mice

- Mice efficiently convert dietary carbohydrates to fatty acids
- **Liver DNL** is up-regulated in obese mice; mechanisms:
 - Hyperinsulinemia (SREBP1c)
 - Increased glucose flux (ChREBP)

- DNL-linked fatty acid elongase ELOVL6 has adverse metabolic effects
 (Matsuzaka et al. 2007, Nat Med 13:1193)

- **Adipose Tissue** DNL is down-regulated in obesity
- DNL-derived palmitoleic acid (C16:1) counteracts insulin resistance (Cao et al. 2008, Cell 134:933)
De Novo Lipogenesis (DNL) in Humans

- Dietary carbohydrates is converted to fatty acids by fatty acid synthase (FASN)
- Obese subjects have a higher rate of hepatic DNL than lean subjects
- FASN mRNA is down-regulated in adipose tissue in obesity
- Common polymorphisms in FASN gene are associated with BMI
Aim of the Study

Characterize the regulation of DNL in human obesity

- Expression of biosynthetic enzymes
- DNL-derived fatty acids
- Link to metabolic disease parameters
Study Cohort

• Tissue bank, Dept. of Surgery, University of Ulm (Anna Wolf, Uwe Knippschild)

• Surgery patients: morbid obesity > non-metastatic cancer > other cases (no liver disease)

• Patients with liver and adipose tissue samples: n=165
Study Cohort: HOMA-IR

R = 0.56
Liver FASN Expression versus BMI
Liver FASN Expression versus BMI

![Graph showing Liver FASN Expression versus BMI](image-url)
Liver FASN Expression versus HOMA-IR, Liver TG, CRP

HOMA-IR

\[R = 0.58 \]
\[P < 10^{-10} \]
Liver FASN Expression versus HOMA-IR, Liver TG, CRP

HOMA-IR

Liver TG

log FASN (rel expression)

log HOMA-IR

log liver TG content

R = 0.58
P < 10^-10

R = 0.42
P < 10^-7
Liver FASN Expression versus HOMA-IR, Liver TG, CRP

HOMA-IR

Liver TG

CRP

log FASN (rel expression) vs log HOMA-IR: $R = 0.58$, $P < 10^{-10}$

log FASN (rel expression) vs log liver TG content: $R = 0.42$, $P < 10^{-7}$

log FASN (rel expression) vs log CRP: $R = 0.32$, $P < 10^{-4}$
Experimental Subgroups

- Gender-matched, (partially) age-matched, n=20, controls (lean and overweight), obese, obese+T2D (type 2 diabetes)

![Graph showing BMI comparison between control, obese, and obese+T2D groups with statistical significance indicated by * p< 0.05, ** p< 0.001]
Experimental Subgroups

- Gender-matched, (partially) age-matched, n=20, controls (lean and overweight), obese, obese+T2D (type 2 diabetes)

T-Test vs. controls, * p< 0.05, ** p< 0.001
Experimental Subgroups

- Gender-matched, (partially) age-matched, n=20, controls (lean and overweight), obese, obese+T2D (type 2 diabetes)

T-Test vs. controls, * p< 0.05, ** p< 0.001
Liver DNL Gene Expression

FASN

T-Test vs. controls, * p < 0.05, ** p < 0.001
Liver DNL Gene Expression

Liver DNL Gene Expression

![Bar charts showing gene expression levels of FASN and ELOVL6 in control, obese, and obese + T2D groups.](chart.png)

T-Test vs. controls, * p< 0.05, ** p< 0.001
Liver DNL Gene Expression

Liver DNL Gene Expression

- **FASN**
- **ELOVL6**
- **SCD**

T-Test vs. controls, * p< 0.05, ** p< 0.001
Visceral Adipose Tissue (VAT) Lipogenic Gene Expression

FASN

T-Test vs. controls, * p< 0.05, ** p< 0.001
Visceral Adipose Tissue (VAT) Lipogenic Gene Expression

FASN

ELOVL6

T-Test vs. controls, * p< 0.05, ** p< 0.001
Visceral Adipose Tissue (VAT) Lipogenic Gene Expression

Visceral Adipose Tissue (VAT) Lipogenic Gene Expression

- **FASN**
 - Control
 - Obese
 - Obese + T2D

- **ELOVL6**
 - Control
 - Obese
 - Obese + T2D

- **SCD**
 - Control
 - Obese
 - Obese + T2D

T-Test vs. controls, * p< 0.05, ** p< 0.001
VAT Westernblots

- FASN, upstream DNL proteins

![Westernblots Image]
VAT Westernblots

1-way ANOVA: Repeated T-TEST
Tukey-Kramer test to correct for multiple comparison
VAT Westernblots

1-way ANOVA: Repeated T-TEST
Tukey-Kramer test to correct for multiple comparison
Palmitoleate (C16:1) in Mouse Adipose Tissue

- Biosynthetic capacity DNL severely impaired in obese adipose tissue => is this reflected in fatty acid patterns?
Palmitoleate (C16:1) in Mouse Adipose Tissue

- Biosynthetic capacity DNL severely impaired in obese adipose tissue => is this reflected in fatty acid patterns?

T-Test vs. controls, * p < 0.05, ** p < 0.001
DNL-Derived Fatty Acids in Human VAT

Palmitic Acid
C16:0

Palmitoleic Acid
C16:1n-7

Vaccenic Acid
C18:1n-7

T-Test vs. controls, * p< 0.05
Summary and Conclusions – Human Liver

- The DNL pathway is profoundly induced in liver of (morbidly) obese humans
Summary and Conclusions – Human Liver

• The DNL pathway is profoundly induced in livers of (morbidly) obese humans

• Liver FASN expression correlates strongly with HOMA-IR, indicating a link to liver insulin resistance/hyperinsulinemia
Summary and Conclusions – Human Liver

• The DNL pathway is profoundly induced in livers of (morbidly) obese humans

• Liver FASN expression correlates strongly with HOMA-IR, indicating a link to liver insulin resistance/hyperinsulinemia

• The induction of liver ELOVL6 may support insulin resistance by increasing synthesis of stearic acid (C18:0), as described in mice (Matsuzaka et al. 2007, Nat Med 13:1193)
Summary and Conclusions: Human VAT

• Except for SCD, the DNL pathway is strongly suppressed in (diabetic) obese humans
Summary and Conclusions: Human VAT

- Except for SCD, the DNL pathway is strongly suppressed in (diabetic) obese humans

- Down-regulation of GLUT4 protein in insulin resistant subjects is consistent with a crucial role of GLUT4 for whole body insulin sensitivity (Abel et al., 2001, Nature 409:729)
Summary and Conclusions: Human VAT

• Except for SCD, the DNL pathway is strongly suppressed in (diabetic) obese humans

• Down-regulation of GLUT4 protein in insulin resistant subjects is consistent with a crucial role of GLUT4 for whole body insulin sensitivity (Abel et al., 2001, Nature 409:729)

• Palmitoleate (C16:1) does not drop in obesity (compensation by liver)
Ongoing/Future Work

• Fatty acid profiling in liver and plasma

• Gene expression changes in adipose tissue after weight loss

• Study liver pathology

• Lipidomics (DNL biomarker)
Acknowledgements

Department of Surgery, Ulm
Uwe Knippschild
Anna Wolf

Mount Sinai School of Medicine, New York
Thomas Scherer
Christoph Büttner

Department of Surgery, Maastricht
Sander Rensen

Dept. of Biochemistry, Hamburg
Leah Eissing
Klaus Tödter
Jörg Heeren
Appendix
Study Cohort: Liver Steatosis

BMI

liver steatosis (%)
Study Cohort: CRP

R = 0.47
Liver FASN Westernblot

n > 8, T-Test vs. controls, * p < 0.05, ** p < 0.001
Correlation VAT GLUT4 - HOMA-IR

\[R = -0.68 \]
\[P < 10^{-5} \]
Mouse Adipose Tissue Macrophage Infiltration

- In mice, obesity is accompanied by massive macrophage infiltration in white adipose tissue

Scheja et al., 2011, BBRC 407:288
Expression of Macrophage Markers in Human VAT

F4/80

CD11b

CD68

T-Test vs. controls, * p < 0.05, ** p < 0.001
Inflammatory Cytokine Expression in Human VAT

IL-1β
- Control
- Obese
- Obese + T2D

TNFα
- Control
- Obese
- Obese + T2D

IFNγ
- Control
- Obese
- Obese + T2D

T-Test vs. controls, * p< 0.05, ** p< 0.001
Adipose Tissue Gene Expression After Weight Loss

- Bariatric surgery, performed at Maastricht University Hospital
- Subcutaneous adipose tissue samples before and after intervention
Liver Transcription Factor Expression

SREBP1

ChREBP

PPARγ

Liver SREBF1 (rel expr)

Liver ChREBP (rel expr)

Liver PPARγ (rel expr)

control obese obese + T2D

control obese obese + T2D

control obese obese + T2D

control obese obese + T2D
Title